-
Notifications
You must be signed in to change notification settings - Fork 301
Implement ORC dataset reader #1383
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
d0b45a9
Implement ORC dataset reader
oliverhu ae2c1c0
reset unintended changes
oliverhu a6c1726
add more datatypes
oliverhu 647a4b5
fix type in macOS, add test
oliverhu f881764
address comments
oliverhu f862192
fix a typo in float conversion
oliverhu File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,246 @@ | ||
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
==============================================================================*/ | ||
|
||
#include <ctime> | ||
#include <iostream> | ||
#include <orc/Exceptions.hh> | ||
#include <orc/OrcFile.hh> | ||
#include <orc/Reader.hh> | ||
#include <orc/Type.hh> | ||
|
||
#include "orc/orc-config.hh" | ||
#include "tensorflow/core/lib/io/buffered_inputstream.h" | ||
#include "tensorflow_io/core/kernels/io_interface.h" | ||
#include "tensorflow_io/core/kernels/io_stream.h" | ||
|
||
namespace tensorflow { | ||
namespace data { | ||
|
||
class ORCReadable : public IOReadableInterface { | ||
public: | ||
ORCReadable(Env* env) : env_(env) {} | ||
~ORCReadable() {} | ||
Status Init(const std::vector<string>& input, | ||
const std::vector<string>& metadata, const void* memory_data, | ||
const int64 memory_size) override { | ||
if (input.size() > 1) { | ||
return errors::InvalidArgument("more than 1 filename is not supported"); | ||
} | ||
const string& filename = input[0]; | ||
// read packet data | ||
orc::RowReaderOptions row_reader_opts; | ||
orc::ReaderOptions reader_opts; | ||
std::unique_ptr<orc::Reader> reader = | ||
orc::createReader(orc::readFile(filename), reader_opts); | ||
|
||
row_reader_ = reader->createRowReader(row_reader_opts); | ||
LOG(INFO) << "ORC file schema:" << reader->getType().toString(); | ||
|
||
// Parse columns. We assume the orc record file is a flat array | ||
auto row_count = reader->getNumberOfRows(); | ||
for (uint64_t i = 0; i < reader->getType().getSubtypeCount(); ++i) { | ||
auto field_name = reader->getType().getFieldName(i); | ||
auto subtype = reader->getType().getSubtype(i); | ||
DataType dtype; | ||
switch (static_cast<int64_t>(subtype->getKind())) { | ||
case orc::SHORT: | ||
dtype = DT_INT16; | ||
break; | ||
case orc::INT: | ||
dtype = DT_INT32; | ||
break; | ||
case orc::LONG: | ||
dtype = DT_INT64; | ||
break; | ||
case orc::STRING: | ||
dtype = DT_STRING; | ||
break; | ||
case orc::DOUBLE: | ||
dtype = DT_DOUBLE; | ||
break; | ||
case orc::FLOAT: | ||
dtype = DT_FLOAT; | ||
break; | ||
default: | ||
return errors::InvalidArgument("data type is not supported: ", | ||
subtype->toString()); | ||
} | ||
columns_.push_back(field_name); | ||
shapes_.push_back(TensorShape({static_cast<int64>(row_count)})); | ||
dtypes_.push_back(dtype); | ||
columns_index_[field_name] = i; | ||
tensors_.emplace_back( | ||
Tensor(dtype, TensorShape({static_cast<int64>(row_count)}))); | ||
} | ||
// Fill in the values | ||
std::unique_ptr<orc::ColumnVectorBatch> batch = | ||
row_reader_->createRowBatch(10); | ||
auto* fields = dynamic_cast<orc::StructVectorBatch*>(batch.get()); | ||
int64_t record_index = 0; | ||
// Template type conversions between ORC and TensorFlow DT | ||
#define PROCESS_TYPE(VTYPE, VDTYPE, TDTYPE) \ | ||
{ \ | ||
auto* col = dynamic_cast<VTYPE>(fields->fields[column_index]); \ | ||
VDTYPE* buffer1 = col->data.data(); \ | ||
tensors_[column_index].flat<TDTYPE>()(record_index) = (TDTYPE)buffer1[r]; \ | ||
} | ||
while (row_reader_->next(*batch)) { | ||
for (uint32_t r = 0; r < batch->numElements; ++r) { | ||
for (size_t column_index = 0; column_index < columns_.size(); | ||
column_index++) { | ||
switch (dtypes_[column_index]) { | ||
case DT_DOUBLE: | ||
PROCESS_TYPE(orc::DoubleVectorBatch*, double, double); | ||
break; | ||
case DT_FLOAT: | ||
PROCESS_TYPE(orc::DoubleVectorBatch*, double, float); | ||
break; | ||
case DT_INT16: | ||
PROCESS_TYPE(orc::LongVectorBatch*, int64, int16); | ||
break; | ||
case DT_INT32: | ||
PROCESS_TYPE(orc::LongVectorBatch*, int64, int32); | ||
break; | ||
case DT_INT64: | ||
PROCESS_TYPE(orc::LongVectorBatch*, int64, int64); | ||
break; | ||
case DT_STRING: { | ||
auto* string_col = dynamic_cast<orc::StringVectorBatch*>( | ||
fields->fields[column_index]); | ||
char** buffer = string_col->data.data(); | ||
int64_t* lengths = string_col->length.data(); | ||
tensors_[column_index].flat<tstring>()(record_index) = | ||
std::string(buffer[r], lengths[r]); | ||
break; | ||
} | ||
default: | ||
return errors::InvalidArgument( | ||
"data type is not supported: ", | ||
DataTypeString(dtypes_[column_index])); | ||
} | ||
} | ||
record_index++; | ||
} | ||
} | ||
|
||
return Status::OK(); | ||
} | ||
|
||
Status Read(const int64 start, const int64 stop, const string& component, | ||
int64* record_read, Tensor* value, Tensor* label) override { | ||
if (columns_index_.find(component) == columns_index_.end()) { | ||
return errors::InvalidArgument("component ", component, " is invalid"); | ||
} | ||
int64 column_index = columns_index_[component]; | ||
|
||
(*record_read) = 0; | ||
if (start >= shapes_[column_index].dim_size(0)) { | ||
return Status::OK(); | ||
} | ||
const string& column = component; | ||
int64 element_start = start < shapes_[column_index].dim_size(0) | ||
? start | ||
: shapes_[column_index].dim_size(0); | ||
int64 element_stop = stop < shapes_[column_index].dim_size(0) | ||
? stop | ||
: shapes_[column_index].dim_size(0); | ||
if (element_start > element_stop) { | ||
return errors::InvalidArgument("dataset ", column, | ||
" selection is out of boundary"); | ||
} | ||
if (element_start == element_stop) { | ||
return Status::OK(); | ||
} | ||
|
||
#define PROCESS_VALUE(VTYPE) \ | ||
{ \ | ||
value->flat<VTYPE>().data()[i] = \ | ||
tensors_[column_index].flat<VTYPE>().data()[i]; \ | ||
} | ||
for (int i = element_start; i < element_stop; i++) { | ||
switch (dtypes_[column_index]) { | ||
case DT_DOUBLE: | ||
PROCESS_VALUE(double); | ||
break; | ||
case DT_FLOAT: | ||
PROCESS_VALUE(float); | ||
break; | ||
case DT_INT16: | ||
PROCESS_VALUE(int16); | ||
break; | ||
case DT_INT32: | ||
PROCESS_VALUE(int32); | ||
break; | ||
case DT_INT64: | ||
PROCESS_VALUE(int64); | ||
break; | ||
case DT_STRING: { | ||
PROCESS_VALUE(tstring); | ||
break; | ||
} | ||
default: | ||
return errors::InvalidArgument("data type is not supported: ", | ||
DataTypeString(dtypes_[column_index])); | ||
} | ||
} | ||
(*record_read) = element_stop - element_start; | ||
|
||
return Status::OK(); | ||
} | ||
|
||
Status Components(std::vector<string>* components) override { | ||
components->clear(); | ||
for (size_t i = 0; i < columns_.size(); i++) { | ||
components->push_back(columns_[i]); | ||
} | ||
return Status::OK(); | ||
} | ||
|
||
Status Spec(const string& component, PartialTensorShape* shape, | ||
DataType* dtype, bool label) override { | ||
if (columns_index_.find(component) == columns_index_.end()) { | ||
return errors::InvalidArgument("component ", component, " is invalid"); | ||
} | ||
int64 column_index = columns_index_[component]; | ||
*shape = shapes_[column_index]; | ||
*dtype = dtypes_[column_index]; | ||
return Status::OK(); | ||
} | ||
|
||
string DebugString() const override { | ||
mutex_lock l(mu_); | ||
return strings::StrCat("ORCReadable"); | ||
} | ||
|
||
private: | ||
mutable mutex mu_; | ||
Env* env_ TF_GUARDED_BY(mu_); | ||
std::unique_ptr<SizedRandomAccessFile> file_ TF_GUARDED_BY(mu_); | ||
std::unique_ptr<orc::RowReader> row_reader_ TF_GUARDED_BY(mu_); | ||
std::vector<Tensor> tensors_; | ||
|
||
std::vector<DataType> dtypes_; | ||
std::vector<TensorShape> shapes_; | ||
std::vector<string> columns_; | ||
std::unordered_map<string, int64> columns_index_; | ||
}; | ||
REGISTER_KERNEL_BUILDER(Name("IO>ORCReadableInit").Device(DEVICE_CPU), | ||
IOInterfaceInitOp<ORCReadable>); | ||
REGISTER_KERNEL_BUILDER(Name("IO>ORCReadableSpec").Device(DEVICE_CPU), | ||
IOInterfaceSpecOp<ORCReadable>); | ||
REGISTER_KERNEL_BUILDER(Name("IO>ORCReadableRead").Device(DEVICE_CPU), | ||
IOReadableReadOp<ORCReadable>); | ||
} // namespace data | ||
} // namespace tensorflow |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
==============================================================================*/ | ||
|
||
#include "tensorflow/core/framework/common_shape_fns.h" | ||
#include "tensorflow/core/framework/op.h" | ||
#include "tensorflow/core/framework/shape_inference.h" | ||
|
||
namespace tensorflow { | ||
REGISTER_OP("IO>ORCReadableInit") | ||
.Input("input: string") | ||
.Output("resource: resource") | ||
.Output("components: string") | ||
.Attr("container: string = ''") | ||
.Attr("shared_name: string = ''") | ||
.SetShapeFn([](shape_inference::InferenceContext* c) { | ||
c->set_output(0, c->Scalar()); | ||
c->set_output(1, c->MakeShape({})); | ||
return Status::OK(); | ||
}); | ||
|
||
REGISTER_OP("IO>ORCReadableSpec") | ||
.Input("input: resource") | ||
.Output("shape: int64") | ||
.Output("dtype: int64") | ||
.Attr("component: string") | ||
.SetShapeFn([](shape_inference::InferenceContext* c) { | ||
c->set_output(0, c->MakeShape({c->UnknownDim()})); | ||
c->set_output(1, c->MakeShape({})); | ||
return Status::OK(); | ||
}); | ||
|
||
REGISTER_OP("IO>ORCReadableRead") | ||
.Input("input: resource") | ||
.Input("start: int64") | ||
.Input("stop: int64") | ||
.Output("value: dtype") | ||
.Attr("component: string") | ||
.Attr("shape: shape") | ||
.Attr("dtype: type") | ||
.SetShapeFn([](shape_inference::InferenceContext* c) { | ||
PartialTensorShape shape; | ||
TF_RETURN_IF_ERROR(c->GetAttr("shape", &shape)); | ||
shape_inference::ShapeHandle entry; | ||
TF_RETURN_IF_ERROR(c->MakeShapeFromPartialTensorShape(shape, &entry)); | ||
c->set_output(0, entry); | ||
return Status::OK(); | ||
}); | ||
} // namespace tensorflow |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.