Our civilization is built on curiosity. Curiosity recommender system's object is suggesting perfect list after reading documents.
- Notion.so raw data generation
 - Nosion.so raw data to markdown
 
1~2 processings are done by texonom/notion-node
- Markdown to Huggingface dataset
 
git clone https://github.com/texonom/texonom-md
python hf_upload.py chroma- Extracted dataset to embedding
 
Run chroma server
pm2 start conf/chroma.jsonRun embedding server
volume=data
model=thenlper/gte-small
docker run -d --name tei --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:0.3.0 --model-id $modelpython index_to.py pgvector --pgstring <PGSTRING>
# or for local onnx inference
python index_to.py pgvector --pgstring <PGSTRING> --local- Use embedding for recommendation
 
- from dictionary dataset without id duplicating (prefer recent one)
 - dataset tagging with date