Skip to content

Commit

Permalink
Added Paper (#88)
Browse files Browse the repository at this point in the history
  • Loading branch information
Paulos2411 authored Mar 6, 2025
1 parent a4167c8 commit 687ba3d
Show file tree
Hide file tree
Showing 10 changed files with 120 additions and 49 deletions.
12 changes: 12 additions & 0 deletions _data/single-cell-transformers.yml
Original file line number Diff line number Diff line change
@@ -1,3 +1,15 @@
- model: The Complexity of Automated Cell Type Annotations with GPT-4
paper:
type: preprint
text: '[Soumya Luthra, et al. 2024](https://www.biorxiv.org/content/10.1101/2025.02.11.637659v2)'
url: https://www.biorxiv.org/content/10.1101/2025.02.11.637659v2
code:
type: reproducible
text: "\x9F\x9B\_ï¸\x8FGithub](https://github.com/soulbio/cell_type_annotation)"
url: https://github.com/soulbio/cell_type_annotation



- model: BioLLM
paper:
type: preprint
Expand Down
95 changes: 79 additions & 16 deletions _site/_data/single-cell-transformers.yml
Original file line number Diff line number Diff line change
@@ -1,3 +1,66 @@
- model: The Complexity of Automated Cell Type Annotations with GPT-4
paper:
type: preprint
text: '[Soumya Luthra, et al. 2024](https://www.biorxiv.org/content/10.1101/2025.02.11.637659v2)'
url: https://www.biorxiv.org/content/10.1101/2025.02.11.637659v2
code:
type: reproducible
text: "\x9F\x9B\_ï¸\x8FGithub](https://github.com/soulbio/cell_type_annotation)"
url: https://github.com/soulbio/cell_type_annotation



- model: BioLLM
paper:
type: preprint
text: '[Ping Qiu, et al. 2024](https://www.biorxiv.org/content/10.1101/2024.11.22.624786v1.full.pdf)'
url: https://www.biorxiv.org/content/10.1101/2024.11.22.624786v1.full.pdf
code:
type: reproducible
text: "\x9F\x9B\_ï¸\x8FGithub](https://github.com/BGIResearch/BioLLM)"
url: https://github.com/BGIResearch/BioLLM
omic_modalities: '-'
pre_training_dataset: '-'
input_embedding: '-'
architecture: '-'
ssl_tasks: '-'
supervised_tasks: '-'




- model: scGPT-spatial
paper:
type: preprint
text: '[Chloe Wang, et al. 2024](https://www.biorxiv.org/content/10.1101/2025.02.05.636714v1.full.pdf)'
url: https://www.biorxiv.org/content/10.1101/2025.02.05.636714v1.full.pdf
code:
type: reproducible
text: "\x9F\x9B\_ï¸\x8FGithub](https://github.com/bowang-lab/scGPT-spatial)"
url: https://github.com/bowang-lab/scGPT-spatial
omic_modalities: '-'
pre_training_dataset: '-'
input_embedding: '-'
architecture: '-'
ssl_tasks: '-'
supervised_tasks: '-'

- model: scCello
paper:
type: peer_reviewed
text: '[Yuan, Xinyu, et al. 2024](https://openreview.net/pdf?id=aeYNVtTo7o)'
url: https://openreview.net/pdf?id=aeYNVtTo7o
code:
type: reproducible
text: "\x9F\x9B\_ï¸\x8FGithub](https://github.com/DeepGraphLearning/scCello)"
url: https://github.com/DeepGraphLearning/scCello
omic_modalities: scRNA-seq
pre_training_dataset: 23M / cross-tissue, human ([CELLxGENE](https://cellxgene.cziscience.com/))
input_embedding: 'Ordering: rank-based'
architecture: Encoder
ssl_tasks: 'Multi-level pre-training: MLM with CE loss for gene level modeling; an ontologybased cell-type coherence loss for intra-cellular level modeling; a relational alignment loss to inject cell-type lineage from cell ontology graph for inter-cellular level modeling'
supervised_tasks: 'fine-tuning tasks: cell type classification; zero-shot tasks: cell type annotation, marker gene prediction, novel cell type prediction, cancer drug prediction'

- model: scGREAT
paper:
type: peer_reviewed
Expand All @@ -14,6 +77,22 @@
ssl_tasks: '-'
supervised_tasks: '-'

- model: MAMMAL
paper:
type: preprint
text: '[Shoshan et al. 2024](https://arxiv.org/abs/2410.22367)'
url: https://arxiv.org/abs/2410.22367
code:
type: reproducible
text: "\x9F\x9B\_ï¸\x8FGitHub](https://github.com/BiomedSciAI/biomed-multi-alignment)"
url: https://github.com/BiomedSciAI/biomed-multi-alignment
omic_modalities: bulk/scRNA-seq, amino acid sequences, SMILES molecule sequences
pre_training_dataset: CellXGene Human
input_embedding: '-'
architecture: T5 Encoder-Decoder
ssl_tasks: Expression-ranked gene masking (CELLxGENE Human), Protein LM (Uniref90), Antibody LM (OAS), Antibody Denoising (OAS), Small-Molecule LM (ZINC), Protein Interaction LM (STRING)
supervised_tasks: Cell type annotation (zheng68k), Cancer drug response prediction (GDSC1/2/3), Brain Blood Barrier Penetration prediction (MoleculeNet), Small-Molecule toxicity prediction (MoleculeNet), drug clinical trial result prediction (MoleculeNet), Antibody-Antigen binding prediction (HER2), Targeted antibody generation (SAbDAb), Protein-Protein delta-delta G prediction (SKEMPI v2), Drug-Target interaction prediction (PEER), TCR binding prediction (Weber et al)

- model: Nicheformer
paper:
type: peer_reviewed
Expand Down Expand Up @@ -145,22 +224,6 @@
supervised_tasks: '-'


- model: scCello
paper:
type: preprint
text: '[Xinyu Yuan et al. 2024](https://github.com/theislab/single-cell-transformer-papers/issues/32)'
url: https://github.com/theislab/single-cell-transformer-papers/issues/32
code:
type: '-'
text: "\x9F\x94\x8DGitHub](https://github.com/DeepGraphLearning/scCello)"
url: 'https://github.com/DeepGraphLearning/scCello'
omic_modalities: '-'
pre_training_dataset: '-'
input_embedding: '-'
architecture: '-'
ssl_tasks: '-'
supervised_tasks: '-'

- model: scGenePT
paper:
type: preprint
Expand Down
36 changes: 16 additions & 20 deletions _site/_data/transformer-evaluation.yml
Original file line number Diff line number Diff line change
Expand Up @@ -26,22 +26,6 @@
tasks: '-'
notes: '-'


- paper:
type: preprint
text: '[George Crowley et al. 2024](https://www.biorxiv.org/content/10.1101/2024.10.10.617605v1.full.pdf)'
url: https://www.biorxiv.org/content/10.1101/2024.10.10.617605v1.full.pdf
code:
type: 'reproducible'
text: '[ð\x9F\x9B\_ï¸\x8FGitHub](https://github.com/ggit12/anndictionary/)'
url: 'https://github.com/ggit12/anndictionary/'
omic_modalities: '-'
evaluated_transformers: '-'
tasks: '-'
notes: '-'



- paper:
type: preprint
text: '[George Crowley et al. 2024](https://www.biorxiv.org/content/10.1101/2024.10.10.617605v1.full.pdf)'
Expand Down Expand Up @@ -77,10 +61,10 @@
type: 'reproducible'
text: '[ð\x9F\x9B\_ï¸\x8FGitHub](https://github.com/aaronwtr/PertEval)'
url: 'https://github.com/aaronwtr/PertEval'
omic_modalities: '-'
evaluated_transformers: '-'
tasks: '-'
notes: '-'
omic_modalities: 'scRNA-seq'
evaluated_transformers: 'UCE, scBERT, scGPT, Geneformer, scFoundation'
tasks: 'Transcriptomic perturbation prediction'
notes: 'Introduces PertEval-scFM, a benchmark to assess the zero-shot utility of single-cell foundation model embeddings for transcriptomic perturbation prediction. Uses SPECTRA to generate train-test splits with increasing dissimilarity to evaluate robustness against distribution shift. Models are evaluated with MSE and AUSPC, with AUSPC reflecting robustness under distribution shift. Additional analyses include E-distance and predicted transcriptomic distributions across the top 20 DEGs. Findings suggest that single-cell foundation model embeddings capture average perturbation effects but generally lack robustness to distribution shift. Ongoing work demonstrates that the domain-specific model GEARS outperforms foundation model embeddings, indicating that masked-language modeling on gene expression data without domain-specific inductive biases is insufficient for accurate transcriptomic perturbation prediction.'



Expand Down Expand Up @@ -194,3 +178,15 @@
evaluated_transformers: scGPT, Geneformer, scBERT
tasks: Cell type annotation
notes: Focused on imbalanced cell type classification. Geneformer appears to be outperformed by scGPT and scBERT, where the two latter perform similarly.
- paper:
type: preprint
text: '[Csendes et al. 2024](https://www.biorxiv.org/content/10.1101/2024.09.30.615843v1)'
url: https://www.biorxiv.org/content/10.1101/2024.09.30.615843v1
code:
type: reproducible
text: "\x9F\x9B\_ï¸\x8FGitHub](https://github.com/turbine-ai/PerturbSeqPredBenchmark)"
url: https://github.com/turbine-ai/PerturbSeqPredBenchmark
omic_modalities: scRNA-seq
evaluated_transformers: scGPT
tasks: Genetic perturbation effect prediction
notes: Simple baseline models can outperform scGPT on perturbational downstream tasks. The most widely used benchmarking datasets contain significant biases, making them suboptimal for evaluation.
4 changes: 2 additions & 2 deletions _site/_pages/implementations.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion _site/feed.xml
Original file line number Diff line number Diff line change
@@ -1 +1 @@
<?xml version="1.0" encoding="utf-8"?><feed xmlns="http://www.w3.org/2005/Atom" ><generator uri="https://jekyllrb.com/" version="4.3.4">Jekyll</generator><link href="http://localhost:4000/single-cell-transformer-papers/feed.xml" rel="self" type="application/atom+xml" /><link href="http://localhost:4000/single-cell-transformer-papers/" rel="alternate" type="text/html" /><updated>2025-01-21T19:30:38+01:00</updated><id>http://localhost:4000/single-cell-transformer-papers/feed.xml</id><title type="html">Transformers in Single-Cell Omics</title><subtitle>A curated collection of papers on transformers in single-cell analysis</subtitle></feed>
<?xml version="1.0" encoding="utf-8"?><feed xmlns="http://www.w3.org/2005/Atom" ><generator uri="https://jekyllrb.com/" version="4.3.4">Jekyll</generator><link href="http://localhost:4000/single-cell-transformer-papers/feed.xml" rel="self" type="application/atom+xml" /><link href="http://localhost:4000/single-cell-transformer-papers/" rel="alternate" type="text/html" /><updated>2025-02-25T09:42:38+01:00</updated><id>http://localhost:4000/single-cell-transformer-papers/feed.xml</id><title type="html">Transformers in Single-Cell Omics</title><subtitle>A curated collection of papers on transformers in single-cell analysis</subtitle></feed>
4 changes: 2 additions & 2 deletions _site/implementations.html

Large diffs are not rendered by default.

4 changes: 2 additions & 2 deletions _site/index.html

Large diffs are not rendered by default.

4 changes: 2 additions & 2 deletions _site/single-cell-transformers.html

Large diffs are not rendered by default.

4 changes: 2 additions & 2 deletions _site/transformer-evaluation.html

Large diffs are not rendered by default.

4 changes: 2 additions & 2 deletions _site/transformer-llms.html

Large diffs are not rendered by default.

0 comments on commit 687ba3d

Please sign in to comment.