Skip to content

FAI-916: Fixed Categorical/CatNum feature casting issues #141

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 3 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 23 additions & 9 deletions src/trustyai/explainers/counterfactuals.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@
OneOutputUnionType,
data_conversion_docstring,
one_input_convert,
java_string_capture,
)

from org.kie.trustyai.explainability.local.counterfactual import (
Expand Down Expand Up @@ -79,6 +80,13 @@ def proposed_features_dataframe(self):
[PredictionInput([entity.as_feature() for entity in self._result.entities])]
)

def _get_feature_difference(self, value_pair):
proposed, original = value_pair
try:
return proposed - original
except TypeError:
return f"{original} -> {proposed}"

def as_dataframe(self) -> pd.DataFrame:
"""
Return the counterfactual result as a dataframe
Expand All @@ -99,15 +107,21 @@ def as_dataframe(self) -> pd.DataFrame:
features = self._result.getFeatures()

data = {}
data["features"] = [f"{entity.as_feature().getName()}" for entity in entities]
data["proposed"] = [entity.as_feature().value.as_obj() for entity in entities]
data["original"] = [
feature.getValue().getUnderlyingObject() for feature in features
data["Features"] = [f"{entity.as_feature().getName()}" for entity in entities]
data["Proposed"] = [
java_string_capture(entity.as_feature().value.as_obj())
for entity in entities
]
data["Original"] = [
java_string_capture(feature.getValue().getUnderlyingObject())
for feature in features
]
data["constrained"] = [feature.is_constrained for feature in features]

dfr = pd.DataFrame.from_dict(data)
dfr["difference"] = dfr.proposed - dfr.original
dfr["Difference"] = dfr[["Proposed", "Original"]].apply(
self._get_feature_difference, 1
)
return dfr

def as_html(self) -> pd.io.formats.style.Styler:
Expand All @@ -128,7 +142,7 @@ def plot(self, block=True) -> None:
Plot the counterfactual result.
"""
_df = self.as_dataframe().copy()
_df = _df[_df["difference"] != 0.0]
_df = _df[_df["Difference"] != 0.0]

def change_colour(value):
if value == 0.0:
Expand All @@ -140,9 +154,9 @@ def change_colour(value):
return colour

with mpl.rc_context(drcp):
colour = _df["difference"].transform(change_colour)
plot = _df[["features", "proposed", "original"]].plot.barh(
x="features", color={"proposed": colour, "original": "black"}
colour = _df["Difference"].transform(change_colour)
plot = _df[["Features", "Proposed", "Original"]].plot.barh(
x="Features", color={"Proposed": colour, "Original": "black"}
)
plot.set_title("Counterfactual")
plt.show(block=block)
Expand Down
22 changes: 12 additions & 10 deletions src/trustyai/metrics/fairness/group.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
OneOutputUnionType,
one_output_convert,
to_trusty_dataframe,
python_int_capture,
)

ColumSelector = Union[List[int], List[str]]
Expand Down Expand Up @@ -59,7 +60,7 @@ def statistical_parity_difference_model(
) -> float:
"""Calculate Statistical Parity Difference using a samples dataframe and a model"""
favorable_prediction_object = one_output_convert(favorable)
_privilege_values = [Value(v) for v in privilege_values]
_privilege_values = [Value(python_int_capture(v)) for v in privilege_values]
_jsamples = to_trusty_dataframe(
data=samples, no_outputs=True, feature_names=feature_names
)
Expand Down Expand Up @@ -103,7 +104,7 @@ def disparate_impact_ratio_model(
) -> float:
"""Calculate Disparate Impact Ration using a samples dataframe and a model"""
favorable_prediction_object = one_output_convert(favorable)
_privilege_values = [Value(v) for v in privilege_values]
_privilege_values = [Value(python_int_capture(v)) for v in privilege_values]
_jsamples = to_trusty_dataframe(
data=samples, no_outputs=True, feature_names=feature_names
)
Expand Down Expand Up @@ -131,8 +132,8 @@ def average_odds_difference(
raise ValueError(
f"Dataframes have different shapes ({test.shape} and {truth.shape})"
)
_privilege_values = [Value(v) for v in privilege_values]
_positive_class = [Value(v) for v in positive_class]
_privilege_values = [Value(python_int_capture(v)) for v in privilege_values]
_positive_class = [Value(python_int_capture(v)) for v in positive_class]
# determine privileged columns
_privilege_columns = _column_selector_to_index(privilege_columns, test)
return FairnessMetrics.groupAverageOddsDifference(
Expand All @@ -156,8 +157,8 @@ def average_odds_difference_model(
_jsamples = to_trusty_dataframe(
data=samples, no_outputs=True, feature_names=feature_names
)
_privilege_values = [Value(v) for v in privilege_values]
_positive_class = [Value(v) for v in positive_class]
_privilege_values = [Value(python_int_capture(v)) for v in privilege_values]
_positive_class = [Value(python_int_capture(v)) for v in positive_class]
# determine privileged columns
_privilege_columns = _column_selector_to_index(privilege_columns, samples)
return FairnessMetrics.groupAverageOddsDifference(
Expand All @@ -179,9 +180,10 @@ def average_predictive_value_difference(
raise ValueError(
f"Dataframes have different shapes ({test.shape} and {truth.shape})"
)
_privilege_values = [Value(v) for v in privilege_values]
_positive_class = [Value(v) for v in positive_class]
_privilege_values = [Value(python_int_capture(v)) for v in privilege_values]
_positive_class = [Value(python_int_capture(v)) for v in positive_class]
_privilege_columns = _column_selector_to_index(privilege_columns, test)

return FairnessMetrics.groupAveragePredictiveValueDifference(
to_trusty_dataframe(data=test, outputs=outputs, feature_names=feature_names),
to_trusty_dataframe(data=truth, outputs=outputs, feature_names=feature_names),
Expand All @@ -201,8 +203,8 @@ def average_predictive_value_difference_model(
) -> float:
"""Calculate Average Predictive Value Difference for a sample dataframe using the provided model"""
_jsamples = to_trusty_dataframe(samples, no_outputs=True)
_privilege_values = [Value(v) for v in privilege_values]
_positive_class = [Value(v) for v in positive_class]
_privilege_values = [Value(python_int_capture(v)) for v in privilege_values]
_positive_class = [Value(python_int_capture(v)) for v in positive_class]
# determine privileged columns
_privilege_columns = _column_selector_to_index(privilege_columns, samples)
return FairnessMetrics.groupAveragePredictiveValueDifference(
Expand Down
12 changes: 9 additions & 3 deletions src/trustyai/model/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,8 @@
import uuid as _uuid
from abc import ABC
from typing import List, Optional, Union, Callable, Tuple

import jpype
import pandas as pd
import pyarrow as pa
import numpy as np
Expand All @@ -23,6 +25,7 @@
prediction_object_to_numpy,
prediction_object_to_pandas,
data_conversion_docstring,
python_int_capture,
)
from trustyai.model.domain import feature_domain

Expand Down Expand Up @@ -810,7 +813,8 @@ def output(name, dtype, value=None, score=1.0) -> _Output:
_type = Type.CATEGORICAL
else:
_type = Type.UNDEFINED
return _Output(name, _type, Value(value), score)

return _Output(name, _type, Value(python_int_capture(value)), score)


def full_text_feature(
Expand Down Expand Up @@ -859,12 +863,14 @@ def feature(
"""

if dtype == "categorical":
if isinstance(value, int):
if isinstance(value, (np.int64, int)):
_factory = FeatureFactory.newCategoricalNumericalFeature
value = JInt(value)
else:
elif isinstance(value, str):
_factory = FeatureFactory.newCategoricalFeature
value = JString(value)
else:
_factory = FeatureFactory.newObjectFeature
elif dtype == "number":
_factory = FeatureFactory.newNumericalFeature
elif dtype == "bool":
Expand Down
22 changes: 14 additions & 8 deletions src/trustyai/model/domain.py
Original file line number Diff line number Diff line change
@@ -1,13 +1,14 @@
# pylint: disable = import-error
# pylint: disable = import-error, unidiomatic-typecheck
"""Conversion method between Python and TrustyAI Java types"""
from typing import Optional, Tuple, List, Union

import jpype
import numpy as np
from jpype import _jclass

from org.kie.trustyai.explainability.model.domain import (
FeatureDomain,
NumericalFeatureDomain,
CategoricalFeatureDomain,
CategoricalNumericalFeatureDomain,
ObjectFeatureDomain,
EmptyFeatureDomain,
Expand Down Expand Up @@ -60,16 +61,21 @@ def feature_domain(values: Optional[Union[Tuple, List]]) -> Optional[FeatureDoma
domain = NumericalFeatureDomain.create(values[0], values[1])

elif isinstance(values, list):
java_array = _jclass.JClass("java.util.Arrays").asList(values)
if isinstance(values[0], bool) and isinstance(values[1], bool):
if type(values[0]) == bool and type(values[1]) == bool:
java_values = [jpype.JBoolean(v) for v in values]
java_array = _jclass.JClass("java.util.Arrays").asList(java_values)
domain = ObjectFeatureDomain.create(java_array)
elif isinstance(values[0], (float, int)) and isinstance(
values[1], (float, int)
elif isinstance(values[0], (float, int, np.number)) and isinstance(
values[1], (float, int, np.number)
):
if isinstance(values[0], (int, np.int64)):
java_values = [jpype.JInt(v) for v in values]
else:
java_values = [jpype.JDouble(v) for v in values]
java_array = _jclass.JClass("java.util.Arrays").asList(java_values)
domain = CategoricalNumericalFeatureDomain.create(java_array)
elif isinstance(values[0], str):
domain = CategoricalFeatureDomain.create(java_array)
else:
java_array = _jclass.JClass("java.util.Arrays").asList(values)
domain = ObjectFeatureDomain.create(java_array)

else:
Expand Down
Loading