Skip to content
/ LPOSS Public
forked from vladan-stojnic/LPOSS

Code for LPOSS: Label Propagation Over Patches and Pixels for Open-vocabulary Semantic Segmentation (CVPR2025)

License

Notifications You must be signed in to change notification settings

whuhxb/LPOSS

 
 

Repository files navigation

LPOSS: Label Propagation Over Patches and Pixels for Open-vocabulary Semantic Segmentation

This repository contains the code for the paper Vladan Stojnić, Yannis Kalantidis, Jiří Matas, Giorgos Tolias, "LPOSS: Label Propagation Over Patches and Pixels for Open-vocabulary Semantic Segmentation", In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2025.

arXiv Open in Spaces

Demo

The demo of our method is available at huggingface spaces.

Setup

Setup the conda environment:

# Create conda environment
conda create -n lposs python=3.9
conda activate lposs
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch

Install MMCV and MMSegmentation:

pip install -U openmim
mim install mmengine    
mim install "mmcv-full==1.6.0"
mim install "mmsegmentation==0.27.0"

Install additional requirements:

conda install -c pytorch -c nvidia faiss-gpu=1.10.0
pip install kornia cupy-cuda11x

Datasets

We use 8 benchmark datasets: PASCAL VOC20, PASCAL Context59, COCO-Object, PASCAL VOC, PASCAL Context, COCO-Stuff, Cityscapes, and ADE20k.

To run the evaluation, download and set up PASCAL VOC, PASCAL Context, COCO-Stuff164k, Cityscapes, and ADE20k datasets following "MMSegmentation" data preparation document.

COCO-Object dataset uses only object classes from COCO-Stuff164k dataset by collecting instance segmentation annotations. Run the following command to convert instance segmentation annotations to semantic segmentation annotations:

python tools/convert_coco.py data/coco_stuff164k/ -o data/coco_stuff164k/

Running

The provided code can be run using follwing commands:

LPOSS:

torchrun main_eval.py lposs.yaml --dataset {voc, coco_object, context, context59, coco_stuff, voc20, ade20k, cityscapes} [--measure_boundary]

LPOSS+:

torchrun main_eval.py lposs_plus.yaml --dataset {voc, coco_object, context, context59, coco_stuff, voc20, ade20k, cityscapes} [--measure_boundary]

Citation

@InProceedings{stojnic2025_lposs,
    author    = {Stojni\'c, Vladan and Kalantidis, Yannis and Matas, Ji\v{r}\'i  and Tolias, Giorgos},
    title     = {LPOSS: Label Propagation Over Patches and Pixels for Open-vocabulary Semantic Segmentation},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    year      = {2025}
}

Acknowledgments

This repository is based on "CLIP-DINOiser: Teaching CLIP a few DINO tricks for Open-Vocabulary Semantic Segmentation". Thanks to the authors!

About

Code for LPOSS: Label Propagation Over Patches and Pixels for Open-vocabulary Semantic Segmentation (CVPR2025)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.9%
  • Shell 0.1%