Skip to content

xbotuk/deeplearning-mindmap

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep Learning Mindmap / Cheatsheet

A Mindmap summarising Deep Learning concepts, Architectures, and the Tensorflow library.

Overview

Deep Learning is part of a broader family of Machine Learning methods based on learning data representations, as opposed to task-specific algorithms. Learning can be supervised, partially supervised, or unsupervised. This is an attempt to summarize this large field in one .PDF file.

Mindmap on Data Science

Here's another mindmap which focuses on Machine Learning basics and Data Science.

Download

Download the PDF here:

I've built the mindmap with MindNode for the Mac. https://mindnode.com

1. Concepts

A partial list of the building blocks of Deep Learning architectures, with notes on the mathematics behind each component.

alt text

2. Architectures

Different Deep Learning architectures have been developed depending on the question being answered. Here's a list of some of them and notes on tuning.

alt text

3. Tensorflow

TensorFlow is an open source software library for numerical computation using data flow graphs. The mindmap lists some of its components, packages, and overall architecture.

alt text

References

I'm planning to built a more complete list of references in the future. For now, these are some of the sources I've used to create this Mindmap.

  • Stanford and Oxford Lectures. CS20SI, CS224d.
  • Books:
    • Deep Learning - Goodfellow.
    • Pattern Recognition and Machine Learning - Bishop.
    • The Elements of Statistical Learning - Hastie.
  • Colah's Blog. http://colah.github.io
  • Kaggle Notebooks.
  • Tensorflow Documentation pages.
  • Google Cloud Data Engineer certification materials.
  • Multiple Wikipedia articles.

About Me

Twitter:

Linkedin:

Email:

About

A mindmap summarising Deep Learning concepts.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published