Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Add support for Tensor Parallelism to the Step-Video-T2V model #454

Merged
merged 3 commits into from
Feb 25, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@ def get_cuda_version():
"opencv-python",
"imageio",
"imageio-ffmpeg",
"einops",
],
extras_require={
"diffusers": [
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
import torch
import torch.nn as nn
from einops import rearrange

try:
from xfuser.core.long_ctx_attention import xFuserLongContextAttention
except ImportError:
xFuserLongContextAttention = None


class Attention(nn.Module):
def __init__(self):
super().__init__()

def attn_processor(self, attn_type):
if attn_type == 'torch':
return self.torch_attn_func
elif attn_type == 'parallel':
return self.parallel_attn_func
else:
raise Exception('Not supported attention type...')

def torch_attn_func(
self,
q,
k,
v,
attn_mask=None,
causal=False,
drop_rate=0.0,
**kwargs
):

if attn_mask is not None and attn_mask.dtype != torch.bool:
attn_mask = attn_mask.to(q.dtype)

if attn_mask is not None and attn_mask.ndim == 3:
n_heads = q.shape[2]
attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1)

q, k, v = map(lambda x: rearrange(x, 'b s h d -> b h s d'), (q, k, v))
x = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=attn_mask, dropout_p=drop_rate, is_causal=causal
)
x = rearrange(x, 'b h s d -> b s h d')
return x

def parallel_attn_func(
self,
q,
k,
v,
causal=False,
**kwargs
):
assert xFuserLongContextAttention is not None;
'to use sequence parallel attention, xFuserLongContextAttention should be imported...'
hybrid_seq_parallel_attn = xFuserLongContextAttention()
x = hybrid_seq_parallel_attn(
None, q, k, v, causal=causal
)
return x
321 changes: 321 additions & 0 deletions xfuser/model_executor/models/customized/step_video_t2v/blocks.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,321 @@
# Copyright 2025 StepFun Inc. All Rights Reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# ==============================================================================
import torch
import torch.nn as nn
from typing import Optional
from einops import rearrange

from xfuser.model_executor.models.customized.step_video_t2v.attentions import Attention
from xfuser.model_executor.models.customized.step_video_t2v.normalization import RMSNorm
from xfuser.model_executor.models.customized.step_video_t2v.rope import RoPE3D


class SelfAttention(Attention):
def __init__(self, hidden_dim, head_dim, bias=False, with_rope=True, with_qk_norm=True, attn_type='torch'):
super().__init__()
self.head_dim = head_dim
self.n_heads = hidden_dim // head_dim
self.n_heads_per_tp = self.n_heads

self.wqkv = nn.Linear(hidden_dim, hidden_dim * 3, bias=bias)
self.wo = nn.Linear(hidden_dim, hidden_dim, bias=bias)

self.with_rope = with_rope
self.with_qk_norm = with_qk_norm
if self.with_qk_norm:
self.q_norm = RMSNorm(head_dim, elementwise_affine=True)
self.k_norm = RMSNorm(head_dim, elementwise_affine=True)

if self.with_rope:
self.rope_3d = RoPE3D(freq=1e4, F0=1.0, scaling_factor=1.0)
self.rope_ch_split = [64, 32, 32]

self.core_attention = self.attn_processor(attn_type=attn_type)
self.parallel = attn_type == 'parallel'

def apply_rope3d(self, x, fhw_positions, rope_ch_split, parallel=True):
x = self.rope_3d(x, fhw_positions, rope_ch_split, parallel)
return x

def forward(
self,
x,
cu_seqlens=None,
max_seqlen=None,
rope_positions=None,
attn_mask=None
):
xqkv = self.wqkv(x)
xqkv = xqkv.view(
*x.shape[:-1],
self.n_heads_per_tp,
3 * self.head_dim
)
xq, xk, xv = torch.split(xqkv, [self.head_dim] * 3, dim=-1) ## seq_len, n, dim

if self.with_qk_norm:
xq = self.q_norm(xq)
xk = self.k_norm(xk)

if self.with_rope:
xq = self.apply_rope3d(xq, rope_positions, self.rope_ch_split, parallel=self.parallel)
xk = self.apply_rope3d(xk, rope_positions, self.rope_ch_split, parallel=self.parallel)

output = self.core_attention(
xq,
xk,
xv,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
attn_mask=attn_mask
)
output = rearrange(output, 'b s h d -> b s (h d)')
output = self.wo(output)

return output


class CrossAttention(Attention):
def __init__(self, hidden_dim, head_dim, bias=False, with_qk_norm=True, attn_type='torch'):
super().__init__()
self.head_dim = head_dim
self.n_heads = hidden_dim // head_dim
self.n_heads_per_tp = self.n_heads

self.wq = nn.Linear(hidden_dim, hidden_dim, bias=bias)
self.wkv = nn.Linear(hidden_dim, hidden_dim * 2, bias=bias)
self.wo = nn.Linear(hidden_dim, hidden_dim, bias=bias)

self.with_qk_norm = with_qk_norm
if self.with_qk_norm:
self.q_norm = RMSNorm(head_dim, elementwise_affine=True)
self.k_norm = RMSNorm(head_dim, elementwise_affine=True)

self.core_attention = self.attn_processor(attn_type=attn_type)

def forward(
self,
x: torch.Tensor,
encoder_hidden_states: torch.Tensor,
attn_mask=None
):
xq = self.wq(x)
xq = xq.view(*xq.shape[:-1], self.n_heads_per_tp, self.head_dim)

xkv = self.wkv(encoder_hidden_states)
xkv = xkv.view(*xkv.shape[:-1], self.n_heads_per_tp, 2 * self.head_dim)

xk, xv = torch.split(xkv, [self.head_dim] * 2, dim=-1)

if self.with_qk_norm:
xq = self.q_norm(xq)
xk = self.k_norm(xk)

output = self.core_attention(
xq,
xk,
xv,
attn_mask=attn_mask
)

output = rearrange(output, 'b s h d -> b s (h d)')
output = self.wo(output)

return output


class GELU(nn.Module):
r"""
GELU activation function with tanh approximation support with `approximate="tanh"`.

Parameters:
dim_in (`int`): The number of channels in the input.
dim_out (`int`): The number of channels in the output.
approximate (`str`, *optional*, defaults to `"none"`): If `"tanh"`, use tanh approximation.
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
"""

def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out, bias=bias)
self.approximate = approximate

def gelu(self, gate: torch.Tensor) -> torch.Tensor:
return torch.nn.functional.gelu(gate, approximate=self.approximate)

def forward(self, hidden_states):
hidden_states = self.proj(hidden_states)
hidden_states = self.gelu(hidden_states)
return hidden_states


class FeedForward(nn.Module):
def __init__(
self,
dim: int,
inner_dim: Optional[int] = None,
dim_out: Optional[int] = None,
mult: int = 4,
bias: bool = False,
):
super().__init__()
inner_dim = dim * mult if inner_dim is None else inner_dim
dim_out = dim if dim_out is None else dim_out
self.net = nn.ModuleList([
GELU(dim, inner_dim, approximate="tanh", bias=bias),
nn.Identity(),
nn.Linear(inner_dim, dim_out, bias=bias)
])

def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
for module in self.net:
hidden_states = module(hidden_states)
return hidden_states


def modulate(x, scale, shift):
x = x * (1 + scale) + shift
return x


def gate(x, gate):
x = gate * x
return x


class StepVideoTransformerBlock(nn.Module):
r"""
A basic Transformer block.

Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
num_embeds_ada_norm (:
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
attention_bias (:
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
only_cross_attention (`bool`, *optional*):
Whether to use only cross-attention layers. In this case two cross attention layers are used.
double_self_attention (`bool`, *optional*):
Whether to use two self-attention layers. In this case no cross attention layers are used.
upcast_attention (`bool`, *optional*):
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
Whether to use learnable elementwise affine parameters for normalization.
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
final_dropout (`bool` *optional*, defaults to False):
Whether to apply a final dropout after the last feed-forward layer.
attention_type (`str`, *optional*, defaults to `"default"`):
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
positional_embeddings (`str`, *optional*, defaults to `None`):
The type of positional embeddings to apply to.
num_positional_embeddings (`int`, *optional*, defaults to `None`):
The maximum number of positional embeddings to apply.
"""

def __init__(
self,
dim: int,
attention_head_dim: int,
norm_eps: float = 1e-5,
ff_inner_dim: Optional[int] = None,
ff_bias: bool = False,
attention_type: str = 'parallel'
):
super().__init__()
self.dim = dim
self.norm1 = nn.LayerNorm(dim, eps=norm_eps)
self.attn1 = SelfAttention(dim, attention_head_dim, bias=False, with_rope=True, with_qk_norm=True,
attn_type=attention_type)

self.norm2 = nn.LayerNorm(dim, eps=norm_eps)
self.attn2 = CrossAttention(dim, attention_head_dim, bias=False, with_qk_norm=True, attn_type='torch')

self.ff = FeedForward(dim=dim, inner_dim=ff_inner_dim, dim_out=dim, bias=ff_bias)

self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim ** 0.5)

@torch.no_grad()
def forward(
self,
q: torch.Tensor,
kv: Optional[torch.Tensor] = None,
timestep: Optional[torch.LongTensor] = None,
attn_mask=None,
rope_positions: list = None,
) -> torch.Tensor:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
torch.clone(chunk) for chunk in
(self.scale_shift_table[None] + timestep.reshape(-1, 6, self.dim)).chunk(6, dim=1)
)

scale_shift_q = modulate(self.norm1(q), scale_msa, shift_msa)

attn_q = self.attn1(
scale_shift_q,
rope_positions=rope_positions
)

q = gate(attn_q, gate_msa) + q

attn_q = self.attn2(
q,
kv,
attn_mask
)

q = attn_q + q

scale_shift_q = modulate(self.norm2(q), scale_mlp, shift_mlp)

ff_output = self.ff(scale_shift_q)

q = gate(ff_output, gate_mlp) + q

return q


class PatchEmbed(nn.Module):
"""2D Image to Patch Embedding"""

def __init__(
self,
patch_size=64,
in_channels=3,
embed_dim=768,
layer_norm=False,
flatten=True,
bias=True,
):
super().__init__()

self.flatten = flatten
self.layer_norm = layer_norm

self.proj = nn.Conv2d(
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
)

def forward(self, latent):
latent = self.proj(latent).to(latent.dtype)
if self.flatten:
latent = latent.flatten(2).transpose(1, 2)
if self.layer_norm:
latent = self.norm(latent)

return latent
Loading