This repo is the refactored python training and inference code for InstantSplat. Forked from commit 2c5006d41894d06464da53d5495300860f432872. We refactored the original code following the standard Python package structure, while keeping the algorithms used in the code identical to the original version.
Initialization methods:
- DUST3R (same method used in InstantSplat)
- MAST3R (same method used in Splatt3R)
- COLMAP Sparse reconstruct (same method used in gaussian-splatting)
- COLMAP Dense reconstruct (use
patch_match_stereo
,stereo_fusion
,poisson_mesher
anddelaunay_mesher
in COLMAP to reconstruct dense point cloud for initialization)
- Pytorch (v2.4 or higher recommended)
- CUDA Toolkit (12.4 recommended, should match with PyTorch version)
pip install --upgrade instantsplat
pip install --upgrade git+https://github.com/yindaheng98/InstantSplat.git@main
If you have trouble with gaussian-splatting
, you can install it from source:
pip install --upgrade git+https://github.com/yindaheng98/gaussian-splatting.git@master
Install gaussian-splatting
.
You can download the wheel from PyPI:
pip install --upgrade gaussian-splatting
Alternatively, install the latest version from the source:
pip install --upgrade git+https://github.com/yindaheng98/gaussian-splatting.git@master
git clone --recursive https://github.com/yindaheng98/InstantSplat
cd InstantSplat
pip install tqdm plyfile scikit-learn numpy
pip install --target . --upgrade --no-deps .
(Optional) If you prefer not to install gaussian-splatting
in your environment, you can install it in your InstantSplat
directory:
pip install --target . --no-deps --upgrade git+https://github.com/yindaheng98/gaussian-splatting.git@master
wget -P checkpoints/ https://download.europe.naverlabs.com/ComputerVision/DUSt3R/DUSt3R_ViTLarge_BaseDecoder_224_linear.pth
wget -P checkpoints/ https://download.europe.naverlabs.com/ComputerVision/DUSt3R/DUSt3R_ViTLarge_BaseDecoder_512_linear.pth
wget -P checkpoints/ https://download.europe.naverlabs.com/ComputerVision/DUSt3R/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth
wget -P checkpoints/ https://download.europe.naverlabs.com/ComputerVision/MASt3R/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth
- Initialize coarse point cloud and jointly train 3DGS & cameras
# Option 1: init and train in one command
python -m instantsplat.train -s data/sora/santorini/3_views -d output/sora/santorini/3_views -i 1000 --init dust3r
# Option 2: init and train in two separate commands
python -m instantsplat.train -i dust3r -d data/sora/santorini/3_views -i dust3r # init coarse point and save as a Colmap workspace at data/sora/santorini/3_views
python -m instantsplat.train -s data/sora/santorini/3_views -d output/sora/santorini/3_views -i 1000 # train
- Render it
python -m gaussian_splatting.render -s data/sora/santorini/3_views -d output/sora/santorini/3_views -i 1000 --load_camera output/sora/santorini/3_views/cameras.json
See .vscode\launch.json for more command examples.
See instantsplat.initialize, instantsplat.train and gaussian_splatting.render for full example.
Also check yindaheng98/gaussian-splatting for more detail of training process.
Use CameraTrainableGaussianModel
in yindaheng98/gaussian-splatting
Use TrainableCameraDataset
in yindaheng98/gaussian-splatting
from instant_splat.initializer import Dust3rInitializer
image_path_list = [os.path.join(image_folder, file) for file in sorted(os.listdir(image_folder))]
initializer = Dust3rInitializer(...).to(args.device) # see instant_splat/initializer/dust3r/dust3r.py for full options
initialized_point_cloud, initialized_cameras = initializer(image_path_list=image_path_list)
Create camera dataset from initialized cameras:
from instant_splat.initializer import TrainableInitializedCameraDataset
dataset = TrainableInitializedCameraDataset(initialized_cameras).to(device)
Initialize 3DGS from initialized coarse point cloud:
gaussians.create_from_pcd(initialized_point_cloud.points, initialized_point_cloud.colors)
Trainer
jointly optimize the 3DGS parameters and cameras, without densification
from instant_splat.trainer import Trainer
trainer = Trainer(
gaussians,
scene_extent=dataset.scene_extent(),
dataset=dataset,
... # see instant_splat/trainer/trainer.py for full options
)
example.mp4
- Confidence-aware Point Cloud Downsampling
- Support 2D-GS
- Support Mip-Splatting
This work is built on many amazing research works and open-source projects, thanks a lot to all the authors for sharing!
If you find our work useful in your research, please consider giving a star ⭐ and citing the following paper 📝.
@misc{fan2024instantsplat,
title={InstantSplat: Unbounded Sparse-view Pose-free Gaussian Splatting in 40 Seconds},
author={Zhiwen Fan and Wenyan Cong and Kairun Wen and Kevin Wang and Jian Zhang and Xinghao Ding and Danfei Xu and Boris Ivanovic and Marco Pavone and Georgios Pavlakos and Zhangyang Wang and Yue Wang},
year={2024},
eprint={2403.20309},
archivePrefix={arXiv},
primaryClass={cs.CV}
}