Skip to content

ymajid/Learning-Hard-Quantum-Distributions-with-Variational-Autoencoders

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Learning Hard Quantum Distributions with Variational Autoencoders

Original Paper

You can find the original paper here.

Goal

The goal of this project was to analyze how the depth of the neural network (NN) affected the fidelity (measure of reconstruction accuracy) of resolving compressed quantum many-body states using Variational-Autoencoders (VAEs).

That is, we sample the probability density of the state, given by |Ψi (t)|2, and reconstruct this distribution using the generative model and determine fidelity.

VAE Architecture

VAE Architecture

Project Structure

.
├── README.md
├── main.py
├── param
│   └── parameters.json
├── results
└── src
    ├── model
    │   ├── hidden_layers.py
    │   ├── model.py
    │   └── variational_autoencoder.py
    └── utils
        ├── create_dataset.py
        ├── gen_data
        │   ├── gen_hard.py
        │   └── gen_random.py
        ├── get_data.py
        └── library.py

Argparse --help

usage: main.py [-h] [-v N] [-n N] [--result result/] [--pretrained False]
               [--param param/param.json]

Learning Hard Quantum States Using a Variational AutoEncoder

optional arguments:
  -h, --help            show this help message and exit
  -v N                  Verbosity (0 = all information, else = nothing).
  -n N                  Number of qubits.
  --pretrained False    Load pretrained model.
  --param param/param.json
                        Parameter file path.

Example Command

python3 main.py -v 0 -n 18 --param param/parameters.json --pretrained False

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages