This repo containes codes for the following paper:
@article{azizi2022pager,
title={PAGER: Progressive Attribute-Guided Extendable Robust Image Generation},
author={Azizi, Zohreh and Kuo, C-C Jay and others},
journal={APSIPA Transactions on Signal and Information Processing},
volume={11},
number={1},
year={2022},
publisher={Now Publishers, Inc.}
}
- Run the folowing lines to create a conda environment:
conda init bash
source ~/.bashrc
conda create -n PAGER python==3.8.5
conda activate PAGER
- Run
bash install.sh
to install required packages.
The code is tested for MNIST, Fashion-MNIST and CelebA.
You must download the datasets and place them in their corresponding folders in the datasets
folder.
- If you use USC HPC server, use the following commands to setup a GPU node:
salloc --time=48:00:00 --ntasks=1 --cpus-per-task=1 --mem=180GB --gres=gpu:v100:1 --partition=gpu
- Load the following cuda and cudnn versions and setup the environment:
conda deactivate
module load gcc/8.3.0
module load cuda/10.1.243
module load cudnn/7.6.5.32-10.1
module load anaconda3
conda activate PAGER
- Run
main_celeba.py
to train and generate for CelebA dataset. - Run
main_mnist_fashion.py
to train and generate for mnist or fashion-mnist datasets.