This project develops a multimodal model to assess Alzheimer's disease using numerical data and MRI images.
The model classifies records into four categories: Non-Demented, Mild Dementia, Moderate Dementia, and Severe Dementia.It integrates diverse data sources to enhance diagnostic accuracy and reliability.
OASIS Dataset: Provided by the Washington University Alzheimer’s Disease Research Center.
- Numerical Data: Includes features like ID, Gender, Dominant Hand, Age, Education Level, Socioeconomic Status, MMSE, eTIV, nWBV, and CDR.
- Image Data: MRI Images
- Numerical Data: Random Forest with XGboost.
- MRI Images: Convolutional Neural Network (CNN).
- Integration: Late fusion of both models for final classification.
Algorithm | Accuracy | Precision | Recall | F1-Score | Loss | Cohen Kappa Score | Matthews Corr. Coeff. | Hamming Loss | Weighted Jaccard |
---|---|---|---|---|---|---|---|---|---|
K-Nearest Neighbors | 0.791 | 0.82 | 0.79 | 0.80 | 2.140 | 0.672 | 0.674 | 0.209 | 0.705 |
Support Vector Machine | 0.896 | 0.88 | 0.90 | 0.89 | 0.278 | 0.831 | 0.832 | 0.104 | 0.837 |
Logistic Regression | 0.945 | 0.95 | 0.95 | 0.94 | 0.178 | 0.912 | 0.913 | 0.055 | 0.904 |
Random Forest | 0.995 | 9.98 | 9.98 | 9.96 | 0.135 | 0.992 | 0.992 | 0.005 | 0.991 |
- Random Forest
- Logistic Regression
- SVM
- KNN
Algorithm | Accuracy | Precision | Recall | F1-Score | Loss | Cohen Kappa Score | Matthews Corr. Coeff. | Hamming Loss | Weighted Jaccard |
---|---|---|---|---|---|---|---|---|---|
AdaBoost + Random Forest | 0.9502 | 0.9156 | 0.9502 | 0.9298 | 0.1031 | 0.9192 | 0.9230 | 0.0498 | 0.9156 |
Gradient Boosting + Random Forest | 0.9851 | 0.9853 | 0.9851 | 0.9851 | 0.0544 | 0.9759 | 0.9760 | 0.0149 | 0.9706 |
Random Forest + XGBoost | 0.9950 | 0.9955 | 0.9950 | 0.9951 | 0.0659 | 0.9920 | 0.9920 | 0.0050 | 0.9905 |
- XGBoost
- Gradient Boosting
- AdaBoost
Model | Final Training Loss | Final Validation Loss | Final Training Accuracy | Final Validation Accuracy |
---|---|---|---|---|
Xception | 0.0056 | 0.0071 | 0.9998 | 0.9951 |
MobileNetV2 | 0.0247 | 0.0233 | 0.9913 | 0.9951 |
ResNet50 | 0.0534 | 0.0552 | 0.9962 | 0.9851 |
InceptionV3 | 0.0542 | 0.0947 | 0.9912 | 0.9851 |
CNN1 | 0.4633 | 0.4099 | 0.8063 | 0.9303 |
CNN2 | 1.1722 | 1.2789 | 0.4931 | 0.4876 |