Skip to content
/ DOSMA Public
forked from ad12/DOSMA

An AI-powered open-source medical image analysis toolbox

License

Notifications You must be signed in to change notification settings

gattia/DOSMA

This branch is 19 commits behind ad12/DOSMA:master.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

f72ca69 · May 25, 2021
May 14, 2021
Dec 30, 2019
May 25, 2021
May 25, 2021
Oct 9, 2018
Jul 21, 2019
May 25, 2021
Mar 12, 2021
Apr 29, 2021
May 1, 2021
Apr 28, 2021
May 10, 2019
May 13, 2021
Oct 23, 2018
Apr 29, 2021
May 13, 2021
May 3, 2021
Jan 30, 2021
May 19, 2021
May 19, 2021
May 19, 2021

Repository files navigation

DOSMA: Deep Open-Source Medical Image Analysis

License: GPL v3 GitHub Workflow Status codecov Documentation Status

Documentation | Questionnaire | DOSMA Basics Tutorial

DOSMA is an AI-powered Python library for medical image analysis. This includes, but is not limited to:

  • image processing (denoising, super-resolution, registration, segmentation, etc.)
  • quantitative fitting and image analysis
  • anatomical visualization and analysis (patellar tilt, femoral cartilage thickness, etc.)

We hope that this open-source pipeline will be useful for quick anatomy/pathology analysis and will serve as a hub for adding support for analyzing different anatomies and scan sequences.

Installation

DOSMA requires Python 3.6+. The core module depends on numpy, nibabel, nipype, pandas, pydicom, scikit-image, scipy, PyYAML, and tqdm.

Additional AI features can be unlocked by installing tensorflow and keras. To enable built-in registration functionality, download elastix. Details can be found in the setup documentation.

To install DOSMA, run:

pip install dosma

# To install with AI support
pip install dosma[ai]

If you would like to contribute to DOSMA, we recommend you clone the repository and install DOSMA with pip in editable mode.

git clone [email protected]:ad12/DOSMA.git
cd DOSMA
pip install -e '.[dev,docs]'
make dev

To run tests, build documentation and contribute, run

make autoformat test build-docs

Features

Simplified, Efficient I/O

DOSMA provides efficient readers for DICOM and NIfTI formats built on nibabel and pydicom. Multi-slice DICOM data can be loaded in parallel with multiple workers and structured into the appropriate 3D volume(s). For example, multi-echo and dynamic contrast-enhanced (DCE) MRI scans have multiple volumes acquired at different echo times and trigger times, respectively. These can be loaded into multiple volumes with ease:

dr = dosma.DicomReader(verbose=True, num_workers=8)
multi_echo_scan = dr.load("/path/to/multi-echo/scan", group_by="EchoNumbers")
dce_scan = dr.load("/path/to/dce/scan", group_by="TriggerTime")

Data-Embedded Medical Images

DOSMA's MedicalVolume data structure supports array-like operations (arithmetic, slicing, etc.) on medical images while preserving spatial attributes and accompanying metadata. This structure supports NumPy interoperability, intelligent reformatting, fast low-level computations, and native GPU support. For example, given MedicalVolumes mvA and mvB we can do the following:

# Reformat image into Superior->Inferior, Anterior->Posterior, Left->Right directions.
mvA = mvA.reformat(("SI", "AP", "LR"))

# Get and set metadata
study_description = mvA.get_metadata("StudyDescription")
mvA.set_metadata("StudyDescription", "A sample study")

# Perform NumPy operations like you would on image data.
rss = np.sqrt(mvA**2 + mvB**2)

# Move to GPU 0 for CuPy operations
mv_gpu = mvA.to(dosma.Device(0))

# Take slices. Metadata will be sliced appropriately.
mv_subvolume = mvA[10:20, 10:20, 4:6]

Built-in AI Models

DOSMA is built to be a hub for machine/deep learning models. A complete list of models and corresponding publications can be found here. We can use one of the knee segmentation models to segment a MedicalVolume mv and model weights downloaded locally:

from dosma.models import IWOAIOAIUnet2DNormalized

# Reformat such that sagittal plane is last dimension.
mv = mv.reformat(("SI", "AP", "LR"))

# Do segmentation
model = IWOAIOAIUnet2DNormalized(input_shape=mv.shape[:2] + (1,), weights_path=weights)
masks = model.generate_mask(mv)

Parallelizable Operations

DOSMA supports parallelization for curve fitting and image registration operations. Image registration is supported thru the elastix/transformix libraries. For example we can use multiple workers to register volumes to a target, and use the registered outputs for per-voxel monoexponential fitting:

# Register images mvA, mvB, mvC to target image mv_tgt in parallel
_, (mvA_reg, mvB_reg, mvC_reg) = dosma.register(
   mv_tgt,
   moving=[mvA, mvB, mvC],
   parameters="/path/to/elastix/registration/file",
   num_workers=3,
   return_volumes=True,
   show_pbar=True,
)

# Perform monoexponential fitting.
def monoexponential(x, a, b):
   return a * np.exp(b*x)

fitter = dosma.CurveFitter(
   monoexponential,
   num_workers=4,
   p0={"a": 1.0, "b": -1/30},
)
popt, r2 = fitter.fit(x=[1, 2, 3, 4], [mv_tgt, mvA_reg, mvB_reg, mvC_reg])
a_fit, b_fit = popt[..., 0], popt[..., 1]

Citation

@inproceedings{desai2019dosma,
   Title={DOSMA: A deep-learning, open-source framework for musculoskeletal MRI analysis.},
   Author =  {Desai, Arjun D and Barbieri, Marco and Mazzoli, Valentina and Rubin, Elka and Black, Marianne S and Watkins, Lauren E and Gold, Garry E and Hargreaves, Brian A and Chaudhari, Akshay S},
   Booktitle={Proc. Intl. Soc. Mag. Reson. Med},
   Volume={27},
   Number={1106},
   Year={2019}
}

In addition to DOSMA, please also consider citing the work that introduced the method used for analysis.

About

An AI-powered open-source medical image analysis toolbox

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 97.8%
  • Shell 2.1%
  • Makefile 0.1%