Skip to content

[Delinearization] Add function for fixed size array without relying on GEP #145050

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 23 additions & 0 deletions llvm/include/llvm/Analysis/Delinearization.h
Original file line number Diff line number Diff line change
Expand Up @@ -112,6 +112,29 @@ void delinearize(ScalarEvolution &SE, const SCEV *Expr,
SmallVectorImpl<const SCEV *> &Subscripts,
SmallVectorImpl<const SCEV *> &Sizes, const SCEV *ElementSize);

/// Split this SCEVAddRecExpr into two vectors of SCEVs representing the
/// subscripts and sizes of an access to a fixed size array. This is a special
/// case of delinearization for fixed size arrays.
///
/// The delinearization is a 2 step process: the first step estimates the sizes
/// of each dimension of the array. The second step computes the access
/// functions for the delinearized array:
///
/// 1. Compute the array size
/// 2. Compute the access function: same as normal delinearization
///
/// Different from the normal delinearization, this function assumes that NO
/// terms exist in the \p Expr. In other words, it assumes that the all step
/// values are constant.
///
/// This function is intended to replace getIndexExpressionsFromGEP and
/// tryDelinearizeFixedSizeImpl. They rely on the GEP source element type so
/// that they will be removed in the future.
void delinearizeFixedSizeArray(ScalarEvolution &SE, const SCEV *Expr,
SmallVectorImpl<const SCEV *> &Subscripts,
SmallVectorImpl<const SCEV *> &Sizes,
const SCEV *ElementSize);

/// Gathers the individual index expressions from a GEP instruction.
///
/// This function optimistically assumes the GEP references into a fixed size
Expand Down
194 changes: 192 additions & 2 deletions llvm/lib/Analysis/Delinearization.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

Expand All @@ -32,6 +33,11 @@ using namespace llvm;
#define DL_NAME "delinearize"
#define DEBUG_TYPE DL_NAME

static cl::opt<bool> UseFixedSizeArrayHeuristic(
"delinearize-use-fixed-size-array-heuristic", cl::init(false), cl::Hidden,
cl::desc("When printing analysis, use the heuristic for fixed-size arrays "
"if the default delinearizetion fails."));

// Return true when S contains at least an undef value.
static inline bool containsUndefs(const SCEV *S) {
return SCEVExprContains(S, [](const SCEV *S) {
Expand Down Expand Up @@ -480,6 +486,178 @@ void llvm::delinearize(ScalarEvolution &SE, const SCEV *Expr,
});
}

static std::optional<APInt> tryIntoAPInt(const SCEV *S) {
if (const auto *Const = dyn_cast<SCEVConstant>(S))
return Const->getAPInt();
return std::nullopt;
}

/// Collects the absolute values of constant steps for all induction variables.
/// Returns true if we can prove that all step recurrences are constants and \p
/// Expr is dividable by \p ElementSize. Each step recurrence is stored in \p
/// Steps after divided by \p ElementSize.
static bool collectConstantAbsSteps(ScalarEvolution &SE, const SCEV *Expr,
SmallVectorImpl<unsigned> &Steps,
unsigned ElementSize) {
// End of recursion. The constant value also must be a multiple of
// ElementSize.
if (const auto *Const = dyn_cast<SCEVConstant>(Expr)) {
const unsigned Mod = Const->getAPInt().urem(ElementSize);
return Mod == 0;
}

const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Expr);
if (!AR || !AR->isAffine())
return false;

const SCEV *Step = AR->getStepRecurrence(SE);
std::optional<APInt> StepAPInt = tryIntoAPInt(Step);
if (!StepAPInt)
return false;

APInt Q;
uint64_t R;
APInt::udivrem(StepAPInt->abs(), ElementSize, Q, R);
if (R != 0)
return false;

// Bail out when the step is too large.
std::optional<unsigned> StepVal = Q.tryZExtValue();
if (!StepVal)
return false;

Steps.push_back(*StepVal);
return collectConstantAbsSteps(SE, AR->getStart(), Steps, ElementSize);
}

static bool findFixedSizeArrayDimensions(ScalarEvolution &SE, const SCEV *Expr,
SmallVectorImpl<unsigned> &Sizes,
const SCEV *ElementSize) {
if (!ElementSize)
return false;

std::optional<APInt> ElementSizeAPInt = tryIntoAPInt(ElementSize);
if (!ElementSizeAPInt || *ElementSizeAPInt == 0)
return false;

std::optional<unsigned> ElementSizeConst = ElementSizeAPInt->tryZExtValue();

// Early exit when ElementSize is not a positive constant.
if (!ElementSizeConst)
return false;

if (!collectConstantAbsSteps(SE, Expr, Sizes, *ElementSizeConst) ||
Sizes.empty()) {
Sizes.clear();
return false;
}

// At this point, Sizes contains the absolute step recurrences for all
// induction variables. Each step recurrence must be a multiple of the size of
// the array element. Assuming that the each value represents the size of an
// array for each dimension, attempts to restore the length of each dimension
// by dividing the step recurrence by the next smaller value. For example, if
// we have the following AddRec SCEV:
//
// AddRec: {{{0,+,2048}<%for.i>,+,256}<%for.j>,+,8}<%for.k> (ElementSize=8)
//
// Then Sizes will become [256, 32, 1] after sorted. We don't know the size of
// the outermost dimension, the next dimension will be computed as 256 / 32 =
// 8, and the last dimension will be computed as 32 / 1 = 32. Thus it results
// in like Arr[UnknownSize][8][32] with elements of size 8 bytes, where Arr is
// a base pointer.
//
// TODO: Catch more cases, e.g., when a step recurrence is not dividable by
// the next smaller one, like A[i][3*j].
llvm::sort(Sizes.rbegin(), Sizes.rend());
Sizes.erase(llvm::unique(Sizes), Sizes.end());
for (unsigned I = 0; I + 1 < Sizes.size(); I++) {
unsigned PrevSize = Sizes[I + 1];
if (Sizes[I] % PrevSize) {
Sizes.clear();
return false;
}
Sizes[I] /= PrevSize;
}

// The last element should be ElementSize.
Sizes.back() = *ElementSizeConst;
return true;
}

/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
/// sizes of an array access, assuming that the array is a fixed size array.
///
/// E.g., if we have the code like as follows:
///
/// double A[42][8][32];
/// for i
/// for j
/// for k
/// use A[i][j][k]
///
/// The access function will be represented as an AddRec SCEV like:
///
/// AddRec: {{{0,+,2048}<%for.i>,+,256}<%for.j>,+,8}<%for.k> (ElementSize=8)
///
/// Then findFixedSizeArrayDimensions infers the size of each dimension of the
/// array based on the fact that the value of the step recurrence is a multiple
/// of the size of the corresponding array element. In the above example, it
/// results in the following:
///
/// CHECK: ArrayDecl[UnknownSize][8][32] with elements of 8 bytes.
///
/// Finally each subscript will be computed as follows:
///
/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
///
/// Note that this function doesn't check the range of possible values for each
/// subscript, so the caller should perform additional boundary checks if
/// necessary.
///
/// TODO: At the moment, this function can handle only simple cases. For
/// example, we cannot handle a case where a step recurrence is not dividable by
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

s/dividable/divisible/

/// the next smaller step recurrence, e.g., A[i][3*j]. Furthermore, this
/// function doesn't guarantee that the original array size is restored
/// "correctly". For example, in the following case:
///
/// double A[42][4][32];
/// double B[42][8][64];
/// for i
/// for j
/// for k
/// use A[i][j][k]
/// use B[i][2*j][k]
///
/// The access function for both accesses will be the same:
///
/// AddRec: {{{0,+,2048}<%for.i>,+,512}<%for.j>,+,8}<%for.k> (ElementSize=8)
///
/// The array sizes for both A and B will be computed as
/// ArrayDecl[UnknownSize][4][64], which matches for A, but not for B.
void llvm::delinearizeFixedSizeArray(ScalarEvolution &SE, const SCEV *Expr,
SmallVectorImpl<const SCEV *> &Subscripts,
SmallVectorImpl<const SCEV *> &Sizes,
const SCEV *ElementSize) {

// First step: find the fixed array size.
SmallVector<unsigned, 4> ConstSizes;
if (!findFixedSizeArrayDimensions(SE, Expr, ConstSizes, ElementSize)) {
Sizes.clear();
return;
}

// Convert the constant size to SCEV.
for (unsigned Size : ConstSizes)
Sizes.push_back(SE.getConstant(Expr->getType(), Size));

// Second step: compute the access functions for each subscript.
computeAccessFunctions(SE, Expr, Subscripts, Sizes);

if (Subscripts.empty())
return;
}

bool llvm::getIndexExpressionsFromGEP(ScalarEvolution &SE,
const GetElementPtrInst *GEP,
SmallVectorImpl<const SCEV *> &Subscripts,
Expand Down Expand Up @@ -586,9 +764,21 @@ void printDelinearization(raw_ostream &O, Function *F, LoopInfo *LI,
O << "AccessFunction: " << *AccessFn << "\n";

SmallVector<const SCEV *, 3> Subscripts, Sizes;

auto IsDelinearizationFailed = [&]() {
return Subscripts.size() == 0 || Sizes.size() == 0 ||
Subscripts.size() != Sizes.size();
};

delinearize(*SE, AccessFn, Subscripts, Sizes, SE->getElementSize(&Inst));
if (Subscripts.size() == 0 || Sizes.size() == 0 ||
Subscripts.size() != Sizes.size()) {
if (UseFixedSizeArrayHeuristic && IsDelinearizationFailed()) {
Subscripts.clear();
Sizes.clear();
delinearizeFixedSizeArray(*SE, AccessFn, Subscripts, Sizes,
SE->getElementSize(&Inst));
}

if (IsDelinearizationFailed()) {
O << "failed to delinearize\n";
continue;
}
Expand Down
Loading
Loading