-
Notifications
You must be signed in to change notification settings - Fork 14.5k
[mlir][linalg] Add mixed precision folding pattern in vectorize_children_and_apply_patterns TD Op #148684
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
[mlir][linalg] Add mixed precision folding pattern in vectorize_children_and_apply_patterns TD Op #148684
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -3784,8 +3784,15 @@ LogicalResult TileUsingForallOp::verify() { | |
|
||
void transform::VectorizeChildrenAndApplyPatternsOp::build( | ||
OpBuilder &builder, OperationState &result, Value target, | ||
bool vectorizePadding, bool vectorizeExtract, bool flatten1DDepthwiseConv) { | ||
bool vectorizeMixedPrecision, bool vectorizePadding, bool vectorizeExtract, | ||
bool flatten1DDepthwiseConv) { | ||
result.addOperands(target); | ||
if (vectorizeMixedPrecision) { | ||
result.addAttribute( | ||
VectorizeChildrenAndApplyPatternsOp::getVectorizeMixedPrecisionAttrName( | ||
result.name), | ||
builder.getUnitAttr()); | ||
} | ||
if (vectorizePadding) { | ||
result.addAttribute( | ||
VectorizeChildrenAndApplyPatternsOp::getVectorizePaddingAttrName( | ||
|
@@ -3876,6 +3883,10 @@ transform::VectorizeChildrenAndApplyPatternsOp::applyToOne( | |
|
||
patterns.add<CopyVectorizationPattern>(ctx); | ||
|
||
if (getVectorizeMixedPrecision()) { | ||
vector::populateFoldArithExtensionPatterns(patterns); | ||
} | ||
Comment on lines
+3886
to
+3888
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. nit: doesn't need braces |
||
|
||
if (getVectorizePadding()) { | ||
linalg::populatePadOpVectorizationPatterns(patterns); | ||
// This creates an alternative path for lowering tensor.pad - by | ||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -190,3 +190,92 @@ module attributes {transform.with_named_sequence} { | |
transform.yield | ||
} | ||
} | ||
|
||
// ----- | ||
|
||
// Mixed Precision vetorization tests. | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. nit: typo |
||
|
||
// CHECK-LABEL: func @mixed_precision_generic_as_contract | ||
// CHECK-COUNT-3: vector.transfer_read | ||
// CHECK-NOT: arith.extf | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Could you also add a case for |
||
// CHECK: vector.contract | ||
// CHECK: vector.transfer_write | ||
func.func @mixed_precision_generic_as_contract(%A: memref<8x16xbf16>, %B: memref<16x32xbf16>, | ||
%C: memref<8x32xf32>) { | ||
linalg.generic { | ||
indexing_maps = [ | ||
affine_map<(m, n, k) -> (m, k)>, | ||
affine_map<(m, n, k) -> (k, n)>, | ||
affine_map<(m, n, k) -> (m, n)> | ||
], | ||
iterator_types = ["parallel", "parallel", "reduction"] | ||
} | ||
ins(%A, %B : memref<8x16xbf16>, memref<16x32xbf16>) | ||
outs(%C : memref<8x32xf32>) { | ||
^bb(%in: bf16, %in_0: bf16, %c: f32) : | ||
%a = arith.extf %in : bf16 to f32 | ||
%b = arith.extf %in_0 : bf16 to f32 | ||
%d = arith.mulf %a, %b: f32 | ||
%e = arith.addf %c, %d: f32 | ||
linalg.yield %e : f32 | ||
} | ||
return | ||
} | ||
|
||
module attributes {transform.with_named_sequence} { | ||
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { | ||
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op | ||
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op | ||
%2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_mixed_precision, disable_transfer_permutation_map_lowering_patterns } : (!transform.any_op) -> !transform.any_op | ||
transform.yield | ||
} | ||
} | ||
|
||
// ----- | ||
|
||
// CHECK-LABEL: @mixed_precision_matmul_as_contract | ||
// CHECK-COUNT-3: vector.transfer_read | ||
// CHECK-NOT: arith.extf | ||
// CHECK: vector.contract | ||
// CHECK: vector.transfer_write | ||
func.func @mixed_precision_matmul_as_contract(%A: tensor<24x12xbf16>, | ||
%B: tensor<12x25xbf16>, | ||
%C: tensor<24x25xf32>) -> tensor<24x25xf32> { | ||
%0 = linalg.contract | ||
indexing_maps = [affine_map<(m, n, k) -> (m, k)>, | ||
affine_map<(m, n, k) -> (k, n)>, | ||
affine_map<(m, n, k) -> (m, n)>] | ||
ins(%A, %B : tensor<24x12xbf16>, tensor<12x25xbf16>) | ||
outs(%C : tensor<24x25xf32>) -> tensor<24x25xf32> | ||
func.return %0 : tensor<24x25xf32> | ||
} | ||
|
||
module attributes {transform.with_named_sequence} { | ||
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { | ||
%0 = transform.structured.match ops{["linalg.contract"]} in %arg1 : (!transform.any_op) -> !transform.any_op | ||
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op | ||
%2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_mixed_precision } : (!transform.any_op) -> !transform.any_op | ||
transform.yield | ||
} | ||
} | ||
|
||
// ----- | ||
|
||
// CHECK-LABEL: @contraction_matmul | ||
// CHECK-COUNT-3: vector.transfer_read | ||
// CHECK-NOT: arith.extf | ||
// CHECK: vector.contract | ||
func.func @contraction_matmul(%A: memref<1584x1584xbf16>, %B: memref<1584x1584xbf16>, %C: memref<1584x1584xf32>) { | ||
linalg.matmul ins(%A, %B: memref<1584x1584xbf16>, memref<1584x1584xbf16>) | ||
outs(%C: memref<1584x1584xf32>) | ||
return | ||
} | ||
|
||
module attributes {transform.with_named_sequence} { | ||
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { | ||
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op | ||
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op | ||
%2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_mixed_precision } : (!transform.any_op) -> !transform.any_op | ||
transform.yield | ||
} | ||
} |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
IIUC, vectorization will happen regardless of this this attribute. Could you update the comment accordingly? Thanks!