-
Notifications
You must be signed in to change notification settings - Fork 14.5k
[LifetimeSafety] Support bidirectional dataflow analysis #148967
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[LifetimeSafety] Support bidirectional dataflow analysis #148967
Conversation
This stack of pull requests is managed by Graphite. Learn more about stacking. |
601cd16
to
b109b6a
Compare
@llvm/pr-subscribers-clang @llvm/pr-subscribers-clang-analysis Author: Utkarsh Saxena (usx95) ChangesGeneralize the dataflow analysis to support both forward and backward analyses. Some program analyses would be expressed as backward dataflow problems (like liveness analysis). This change enables the framework to support both forward analyses (like the loan propagation analysis) and backward analyses with the same infrastructure. Full diff: https://github.com/llvm/llvm-project/pull/148967.diff 1 Files Affected:
diff --git a/clang/lib/Analysis/LifetimeSafety.cpp b/clang/lib/Analysis/LifetimeSafety.cpp
index 0e013ec23e776..f9a7093987896 100644
--- a/clang/lib/Analysis/LifetimeSafety.cpp
+++ b/clang/lib/Analysis/LifetimeSafety.cpp
@@ -499,13 +499,16 @@ class FactGenerator : public ConstStmtVisitor<FactGenerator> {
// ========================================================================= //
// Generic Dataflow Analysis
// ========================================================================= //
-/// A generic, policy-based driver for forward dataflow analyses. It combines
+
+enum class Direction { Forward, Backward };
+
+/// A generic, policy-based driver for dataflow analyses. It combines
/// the dataflow runner and the transferer logic into a single class hierarchy.
///
/// The derived class is expected to provide:
/// - A `Lattice` type.
/// - `StringRef getAnalysisName() const`
-/// - `Lattice getInitialState();` The initial state at the function entry.
+/// - `Lattice getInitialState();` The initial state of the analysis.
/// - `Lattice join(Lattice, Lattice);` Merges states from multiple CFG paths.
/// - `Lattice transfer(Lattice, const FactType&);` Defines how a single
/// lifetime-relevant `Fact` transforms the lattice state. Only overloads
@@ -514,18 +517,21 @@ class FactGenerator : public ConstStmtVisitor<FactGenerator> {
/// \tparam Derived The CRTP derived class that implements the specific
/// analysis.
/// \tparam LatticeType The dataflow lattice used by the analysis.
-/// TODO: Maybe use the dataflow framework! The framework might need changes
-/// to support the current comparison done at block-entry.
-template <typename Derived, typename LatticeType> class DataflowAnalysis {
+/// \tparam Dir The direction of the analysis (Forward or Backward).
+template <typename Derived, typename LatticeType, Direction Dir>
+class DataflowAnalysis {
public:
using Lattice = LatticeType;
+ using Base = DataflowAnalysis<Derived, LatticeType, Dir>;
private:
const CFG &Cfg;
AnalysisDeclContext &AC;
- llvm::DenseMap<const CFGBlock *, Lattice> BlockEntryStates;
- llvm::DenseMap<const CFGBlock *, Lattice> BlockExitStates;
+ llvm::DenseMap<const CFGBlock *, Lattice> InStates;
+ llvm::DenseMap<const CFGBlock *, Lattice> OutStates;
+
+ static constexpr bool isForward() { return Dir == Direction::Forward; }
protected:
FactManager &AllFacts;
@@ -539,75 +545,76 @@ template <typename Derived, typename LatticeType> class DataflowAnalysis {
Derived &D = static_cast<Derived &>(*this);
llvm::TimeTraceScope Time(D.getAnalysisName());
- ForwardDataflowWorklist Worklist(Cfg, AC);
- const CFGBlock *Entry = &Cfg.getEntry();
- BlockEntryStates[Entry] = D.getInitialState();
- Worklist.enqueueBlock(Entry);
- llvm::SmallBitVector Visited;
- Visited.resize(Cfg.getNumBlockIDs() + 1);
-
- while (const CFGBlock *B = Worklist.dequeue()) {
- Lattice EntryState = getEntryState(B);
- Lattice ExitState = transferBlock(B, EntryState);
- BlockExitStates[B] = ExitState;
- Visited.set(B->getBlockID());
+ using Worklist =
+ std::conditional_t<Dir == Direction::Forward, ForwardDataflowWorklist,
+ BackwardDataflowWorklist>;
+ Worklist W(Cfg, AC);
+
+ const CFGBlock *Start = isForward() ? &Cfg.getEntry() : &Cfg.getExit();
+ InStates[Start] = D.getInitialState();
+ W.enqueueBlock(Start);
- for (const CFGBlock *Successor : B->succs()) {
- Lattice OldSuccEntryState = getEntryState(Successor);
- Lattice NewSuccEntryState = D.join(OldSuccEntryState, ExitState);
+ llvm::SmallBitVector Visited(Cfg.getNumBlockIDs() + 1);
- // Enqueue the successor if its entry state has changed or if we have
+ while (const CFGBlock *B = W.dequeue()) {
+ Lattice StateIn = getInState(B);
+ Lattice StateOut = transferBlock(B, StateIn);
+ OutStates[B] = StateOut;
+ Visited.set(B->getBlockID());
+ for (const CFGBlock *AdjacentB : isForward() ? B->succs() : B->preds()) {
+ Lattice OldInState = getInState(AdjacentB);
+ Lattice NewInState = D.join(OldInState, StateOut);
+ // Enqueue the adjacent block if its in-state has changed or if we have
// never visited it.
- if (!Visited.test(Successor->getBlockID()) ||
- NewSuccEntryState != OldSuccEntryState) {
- BlockEntryStates[Successor] = NewSuccEntryState;
- Worklist.enqueueBlock(Successor);
+ if (!Visited.test(AdjacentB->getBlockID()) ||
+ NewInState != OldInState) {
+ InStates[AdjacentB] = NewInState;
+ W.enqueueBlock(AdjacentB);
}
}
}
}
- Lattice getEntryState(const CFGBlock *B) const {
- return BlockEntryStates.lookup(B);
- }
+ Lattice getInState(const CFGBlock *B) const { return InStates.lookup(B); }
- Lattice getExitState(const CFGBlock *B) const {
- return BlockExitStates.lookup(B);
- }
+ Lattice getOutStates(const CFGBlock *B) const { return OutStates.lookup(B); }
void dump() const {
const Derived *D = static_cast<const Derived *>(this);
llvm::dbgs() << "==========================================\n";
llvm::dbgs() << D->getAnalysisName() << " results:\n";
llvm::dbgs() << "==========================================\n";
- const CFGBlock &B = Cfg.getExit();
- getExitState(&B).dump(llvm::dbgs());
+ const CFGBlock &B = isForward() ? Cfg.getExit() : Cfg.getEntry();
+ getOutStates(&B).dump(llvm::dbgs());
}
-private:
- /// Computes the exit state of a block by applying all its facts sequentially
- /// to a given entry state.
+ /// Computes the state at one end of a block by applying all its facts
+ /// sequentially to a given state from the other end.
/// TODO: We might need to store intermediate states per-fact in the block for
/// later analysis.
- Lattice transferBlock(const CFGBlock *Block, Lattice EntryState) {
- Lattice BlockState = EntryState;
- for (const Fact *F : AllFacts.getFacts(Block)) {
- BlockState = transferFact(BlockState, F);
- }
- return BlockState;
+ Lattice transferBlock(const CFGBlock *Block, Lattice State) {
+ auto Facts = AllFacts.getFacts(Block);
+ if constexpr (isForward())
+ for (const Fact *F : Facts)
+ State = transferFact(State, F);
+ else
+ for (const Fact *F : llvm::reverse(Facts))
+ State = transferFact(State, F);
+ return State;
}
Lattice transferFact(Lattice In, const Fact *F) {
- Derived *d = static_cast<Derived *>(this);
+ assert(F);
+ Derived *D = static_cast<Derived *>(this);
switch (F->getKind()) {
case Fact::Kind::Issue:
- return d->transfer(In, *F->getAs<IssueFact>());
+ return D->transfer(In, *F->getAs<IssueFact>());
case Fact::Kind::Expire:
- return d->transfer(In, *F->getAs<ExpireFact>());
+ return D->transfer(In, *F->getAs<ExpireFact>());
case Fact::Kind::AssignOrigin:
- return d->transfer(In, *F->getAs<AssignOriginFact>());
+ return D->transfer(In, *F->getAs<AssignOriginFact>());
case Fact::Kind::ReturnOfOrigin:
- return d->transfer(In, *F->getAs<ReturnOfOriginFact>());
+ return D->transfer(In, *F->getAs<ReturnOfOriginFact>());
}
llvm_unreachable("Unknown fact kind");
}
@@ -715,7 +722,8 @@ struct LoanPropagationLattice {
/// The analysis that tracks which loans belong to which origins.
class LoanPropagationAnalysis
- : public DataflowAnalysis<LoanPropagationAnalysis, LoanPropagationLattice> {
+ : public DataflowAnalysis<LoanPropagationAnalysis, LoanPropagationLattice,
+ Direction::Forward> {
LifetimeFactory &Factory;
@@ -724,7 +732,7 @@ class LoanPropagationAnalysis
LifetimeFactory &Factory)
: DataflowAnalysis(C, AC, F), Factory(Factory) {}
- using DataflowAnalysis<LoanPropagationAnalysis, Lattice>::transfer;
+ using Base::transfer;
StringRef getAnalysisName() const { return "LoanPropagation"; }
|
7502ee5
to
9475733
Compare
7b26a72
to
839eb25
Compare
9475733
to
7762a38
Compare
Merge activity
|
954ba85
to
a8d93c9
Compare
7762a38
to
4a23369
Compare
4a23369
to
b76c916
Compare
Generalize the dataflow analysis to support both forward and backward analyses.
Some program analyses would be expressed as backward dataflow problems (like liveness analysis). This change enables the framework to support both forward analyses (like the loan propagation analysis) and backward analyses with the same infrastructure.