-
Notifications
You must be signed in to change notification settings - Fork 14.5k
[mlir][linalg] Update vectorization logic for linalg.unpack #149156
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[mlir][linalg] Update vectorization logic for linalg.unpack #149156
Conversation
This PR makes sure that we don't generate unnecessary `tensor.empty` when vectorizing `linalg.unpack`. To better visualize the changes implemented here, consider this IR: ```mlir func.func @example( %source: tensor<8x4x16x16xf32>, %dest: tensor<64x127xf32>) -> tensor<64x127xf32> { %res = linalg.unpack %source outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [16, 16] into %dest : tensor<8x4x16x16xf32> -> tensor<64x127xf32> return %res : tensor<64x127xf32> } ``` BEFORE (note `tensor.empty` and the fact that `%arg1` is not used): ```mlir func.func @example(%arg0: tensor<8x4x16x16xf32>, %arg1: tensor<64x127xf32>) -> tensor<64x127xf32> { %cst = arith.constant 0.000000e+00 : f32 %c0 = arith.constant 0 : index %0 = vector.transfer_read %arg0[%c0, %c0, %c0, %c0], %cst {in_bounds = [true, true, true, true]} : tensor<8x4x16x16xf32>, vector<8x4x16x16xf32> %1 = vector.transpose %0, [1, 2, 0, 3] : vector<8x4x16x16xf32> to vector<4x16x8x16xf32> %2 = vector.shape_cast %1 : vector<4x16x8x16xf32> to vector<64x128xf32> %3 = tensor.empty() : tensor<64x127xf32> %c0_0 = arith.constant 0 : index %4 = vector.transfer_write %2, %3[%c0_0, %c0_0] {in_bounds = [true, false]} : vector<64x128xf32>, tensor<64x127xf32> return %4 : tensor<64x127xf32> } ``` AFTER (note that `%arg1` is correctly used): ```mlir func.func @example(%arg0: tensor<8x4x16x16xf32>, %arg1: tensor<64x127xf32>) -> tensor<64x127xf32> { %cst = arith.constant 0.000000e+00 : f32 %c0 = arith.constant 0 : index %0 = vector.transfer_read %arg0[%c0, %c0, %c0, %c0], %cst {in_bounds = [true, true, true, true]} : tensor<8x4x16x16xf32>, vector<8x4x16x16xf32> %1 = vector.transpose %0, [1, 2, 0, 3] : vector<8x4x16x16xf32> to vector<4x16x8x16xf32> %2 = vector.shape_cast %1 : vector<4x16x8x16xf32> to vector<64x128xf32> %c0_0 = arith.constant 0 : index %3 = vector.transfer_write %2, %arg1[%c0_0, %c0_0] {in_bounds = [true, false]} : vector<64x128xf32>, tensor<64x127xf32> return %3 : tensor<64x127xf32> } ```
@llvm/pr-subscribers-mlir-linalg @llvm/pr-subscribers-mlir Author: Andrzej Warzyński (banach-space) ChangesThis PR makes sure that we don't generate unnecessary To better visualize the changes implemented here, consider this IR: func.func @<!-- -->example(
%source: tensor<8x4x16x16xf32>,
%dest: tensor<64x127xf32>) -> tensor<64x127xf32> {
%res = linalg.unpack %source
outer_dims_perm = [1, 0]
inner_dims_pos = [0, 1]
inner_tiles = [16, 16]
into %dest : tensor<8x4x16x16xf32> -> tensor<64x127xf32>
return %res : tensor<64x127xf32>
} BEFORE (note func.func @<!-- -->example(%arg0: tensor<8x4x16x16xf32>, %arg1: tensor<64x127xf32>) -> tensor<64x127xf32> {
%cst = arith.constant 0.000000e+00 : f32
%c0 = arith.constant 0 : index
%0 = vector.transfer_read %arg0[%c0, %c0, %c0, %c0], %cst {in_bounds = [true, true, true, true]} : tensor<8x4x16x16xf32>, vector<8x4x16x16xf32>
%1 = vector.transpose %0, [1, 2, 0, 3] : vector<8x4x16x16xf32> to vector<4x16x8x16xf32>
%2 = vector.shape_cast %1 : vector<4x16x8x16xf32> to vector<64x128xf32>
%3 = tensor.empty() : tensor<64x127xf32>
%c0_0 = arith.constant 0 : index
%4 = vector.transfer_write %2, %3[%c0_0, %c0_0] {in_bounds = [true, false]} : vector<64x128xf32>, tensor<64x127xf32>
return %4 : tensor<64x127xf32>
} AFTER (note that func.func @<!-- -->example(%arg0: tensor<8x4x16x16xf32>, %arg1: tensor<64x127xf32>) -> tensor<64x127xf32> {
%cst = arith.constant 0.000000e+00 : f32
%c0 = arith.constant 0 : index
%0 = vector.transfer_read %arg0[%c0, %c0, %c0, %c0], %cst {in_bounds = [true, true, true, true]} : tensor<8x4x16x16xf32>, vector<8x4x16x16xf32>
%1 = vector.transpose %0, [1, 2, 0, 3] : vector<8x4x16x16xf32> to vector<4x16x8x16xf32>
%2 = vector.shape_cast %1 : vector<4x16x8x16xf32> to vector<64x128xf32>
%c0_0 = arith.constant 0 : index
%3 = vector.transfer_write %2, %arg1[%c0_0, %c0_0] {in_bounds = [true, false]} : vector<64x128xf32>, tensor<64x127xf32>
return %3 : tensor<64x127xf32>
} Full diff: https://github.com/llvm/llvm-project/pull/149156.diff 2 Files Affected:
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index b467114c72f7d..363a7c1a1a557 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -1935,11 +1935,8 @@ vectorizeAsTensorUnpackOp(RewriterBase &rewriter, linalg::UnPackOp unpackOp,
unpackOp.getDestType().hasStaticShape()
? vectorSizes
: shapeCastOp.getResultVectorType().getShape());
- Value dest = rewriter.create<tensor::EmptyOp>(
- loc, reifiedRetShapes[0],
- shapeCastOp.getResult().getType().getElementType());
Operation *write = createWriteOrMaskedWrite(
- rewriter, loc, shapeCastOp.getResult(), dest,
+ rewriter, loc, shapeCastOp.getResult(), unpackOp.getDest(),
/*writeIndices=*/{}, useInBoundsInsteadOfMasking);
newResults.push_back(write->getResult(0));
return success();
diff --git a/mlir/test/Dialect/Linalg/vectorization/linalg-ops.mlir b/mlir/test/Dialect/Linalg/vectorization/linalg-ops.mlir
index 6722de817f6bf..11c86f1c31406 100644
--- a/mlir/test/Dialect/Linalg/vectorization/linalg-ops.mlir
+++ b/mlir/test/Dialect/Linalg/vectorization/linalg-ops.mlir
@@ -1158,6 +1158,7 @@ module attributes {transform.with_named_sequence} {
// -----
// CHECK-LABEL: func @test_vectorize_dynamic_shapes_unpack
+// CHECK-SAME: %[[ARG_0:.*]]: tensor<?x?xf32>,
func.func @test_vectorize_dynamic_shapes_unpack(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?x16x2xf32>) -> tensor<?x?xf32> {
// CHECK: %[[C0:.*]] = arith.constant 0
// CHECK: %[[DIM:.*]] = tensor.dim %arg0, %[[C0]] : tensor<?x?xf32>
@@ -1175,9 +1176,8 @@ func.func @test_vectorize_dynamic_shapes_unpack(%arg0: tensor<?x?xf32>, %arg1: t
// CHECK: %[[read0:.*]] = vector.mask %[[readMsk0]] {{.*}} vector.transfer_read %{{.*}} : tensor<?x?x16x2xf32>, vector<2x1x16x2xf32> } : vector<2x1x16x2xi1> -> vector<2x1x16x2xf32>
// CHECK: %[[trans0:.*]] = vector.transpose %[[read0]], [0, 3, 1, 2] : vector<2x1x16x2xf32> to vector<2x2x1x16xf32>
// CHECK: %[[sc0:.*]] = vector.shape_cast %[[trans0]] : vector<2x2x1x16xf32> to vector<4x16xf32>
-// CHECK: %[[empt0:.*]] = tensor.empty
// CHECK: %[[writeMsk0:.*]] = vector.create_mask {{.*}} : vector<4x16xi1>
-// CHECK: %[[write0:.*]] = vector.mask %[[writeMsk0:.*]] {{.*}} vector.transfer_write %[[sc0]], %[[empt0]]
+// CHECK: %[[write0:.*]] = vector.mask %[[writeMsk0:.*]] {{.*}} vector.transfer_write %[[sc0]], %[[ARG_0]]
// CHECK: return %[[write0]]
%ret = linalg.unpack %arg1 inner_dims_pos = [1, 0] inner_tiles = [16, 2] into %arg0 : tensor<?x?x16x2xf32> -> tensor<?x?xf32>
return %ret : tensor<?x?xf32>
@@ -1193,6 +1193,8 @@ module attributes {transform.with_named_sequence} {
// -----
// CHECK-LABEL: func @test_vectorize_unpack
+// CHECK-SAME: %[[SRC:.*]]: tensor<8x8x32x16xf32>
+// CHECK-SAME: %[[DEST:.*]]: tensor<256x128xf32>
func.func @test_vectorize_unpack(%source: tensor<8x8x32x16xf32>, %dest: tensor<256x128xf32>) -> tensor<256x128xf32> {
// CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[C0:.*]]= arith.constant 0 : index
@@ -1201,15 +1203,14 @@ func.func @test_vectorize_unpack(%source: tensor<8x8x32x16xf32>, %dest: tensor<2
// CHECK: %[[C32:.*]] = arith.constant 32 : index
// CHECK: %[[C16:.*]] = arith.constant 16 : index
// CHECK: %[[MSK0:.*]] = vector.create_mask %[[C8]], %[[C80]], %[[C32]], %[[C16]] : vector<16x8x32x16xi1>
- // CHECK: %[[READ0:.*]] = vector.mask %[[MSK0]] {{.*}} : vector<16x8x32x16xi1> -> vector<16x8x32x16xf32>
+ // CHECK: %[[READ0:.*]] = vector.mask %[[MSK0]] { vector.transfer_read %[[SRC]]{{.*}}} : vector<16x8x32x16xi1> -> vector<16x8x32x16xf32>
// CHECK: %[[TRANSP0:.*]] = vector.transpose %[[READ0]], [0, 2, 1, 3] : vector<16x8x32x16xf32> to vector<16x32x8x16xf32>
// CHECK: %[[SHAPC:.*]] = vector.shape_cast %[[TRANSP0]] : vector<16x32x8x16xf32> to vector<512x128xf32>
- // CHECK: %[[EMPT:.*]] = tensor.empty() : tensor<256x128xf32>
// CHECK: %[[C01:.*]] = arith.constant 0 : index
// CHECK: %[[C256:.*]] = arith.constant 256 : index
// CHECK: %[[C128:.*]] = arith.constant 128 : index
// CHECK: %[[WRITEMSK:.*]] = vector.create_mask %[[C256]], %[[C128]] : vector<512x128xi1>
- // CHECK: %[[WRIT:.*]] = vector.mask %[[WRITEMSK]] {{.*}} : vector<512x128xi1> -> tensor<256x128xf32>
+ // CHECK: %[[WRIT:.*]] = vector.mask %[[WRITEMSK]] { vector.transfer_write %[[SHAPC]], %[[DEST]]{{.*}}} : vector<512x128xi1> -> tensor<256x128xf32>
// CHECK: return %[[WRIT]] : tensor<256x128xf32>
%0 = linalg.unpack %source inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %dest : tensor<8x8x32x16xf32> -> tensor<256x128xf32>
return %0 : tensor<256x128xf32>
@@ -1225,15 +1226,16 @@ func.func @test_vectorize_unpack(%source: tensor<8x8x32x16xf32>, %dest: tensor<2
// -----
// CHECK-LABEL: func @test_vectorize_unpack_no_masks
+// CHECK-SAME: %[[SRC:.*]]: tensor<8x8x32x16xf32>
+// CHECK-SAME: %[[DEST:.*]]: tensor<256x128xf32>
func.func @test_vectorize_unpack_no_masks(%source: tensor<8x8x32x16xf32>, %dest: tensor<256x128xf32>) -> tensor<256x128xf32> {
// CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[C0:.*]] = arith.constant 0 : index
- // CHECK: %[[READ:.*]] = vector.transfer_read {{.*}} : tensor<8x8x32x16xf32>, vector<8x8x32x16xf32>
+ // CHECK: %[[READ:.*]] = vector.transfer_read %[[SRC]]{{.*}}} : tensor<8x8x32x16xf32>, vector<8x8x32x16xf32>
// CHECK: %[[TRANSP:.*]] = vector.transpose %[[READ]], [0, 2, 1, 3] : vector<8x8x32x16xf32> to vector<8x32x8x16xf32>
// CHECK: %[[SHAPC:.*]] = vector.shape_cast %[[TRANSP]] : vector<8x32x8x16xf32> to vector<256x128xf32>
- // CHECK: %[[EMPT:.*]] = tensor.empty() : tensor<256x128xf32>
// CHECK: %[[C00:.*]] = arith.constant 0 : index
- // CHECK: %[[WRIT:.*]] = vector.transfer_write %[[SHAPC]], {{.*}} : vector<256x128xf32>, tensor<256x128xf32>
+ // CHECK: %[[WRIT:.*]] = vector.transfer_write %[[SHAPC]], %[[DEST]]{{.*}}} : vector<256x128xf32>, tensor<256x128xf32>
// CHECK: return %[[WRIT]] : tensor<256x128xf32>
%0 = linalg.unpack %source inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %dest : tensor<8x8x32x16xf32> -> tensor<256x128xf32>
return %0 : tensor<256x128xf32>
@@ -1248,16 +1250,17 @@ func.func @test_vectorize_unpack_no_masks(%source: tensor<8x8x32x16xf32>, %dest:
// -----
- // CHECK-LABEL: test_vectorize_unpack_with_outer_perm
+// CHECK-LABEL: test_vectorize_unpack_with_outer_perm
+// CHECK-SAME: %[[SRC:.*]]: tensor<8x8x32x16xf32>
+// CHECK-SAME: %[[DEST:.*]]: tensor<256x128xf32>
func.func @test_vectorize_unpack_with_outer_perm(%source: tensor<8x8x32x16xf32>, %dest: tensor<256x128xf32>) -> tensor<256x128xf32> {
// CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[C0:.*]] = arith.constant 0 : index
- // CHECK: %[[READ:.*]] = vector.transfer_read {{.*}} : tensor<8x8x32x16xf32>, vector<8x8x32x16xf32>
+ // CHECK: %[[READ:.*]] = vector.transfer_read %[[SRC]]{{.*}}} : tensor<8x8x32x16xf32>, vector<8x8x32x16xf32>
// CHECK: %[[TRANSP:.*]] = vector.transpose %[[READ]], [1, 2, 0, 3] : vector<8x8x32x16xf32> to vector<8x32x8x16xf32>
// CHECK: %[[SHAPC:.*]] = vector.shape_cast %[[TRANSP]] : vector<8x32x8x16xf32> to vector<256x128xf32>
- // CHECK: %[[EMPT:.*]] = tensor.empty() : tensor<256x128xf32>
// CHECK: %[[C00:.*]] = arith.constant 0 : index
- // CHECK: %[[WRIT:.*]] = vector.transfer_write %[[SHAPC]], {{.*}} : vector<256x128xf32>, tensor<256x128xf32>
+ // CHECK: %[[WRIT:.*]] = vector.transfer_write %[[SHAPC]], %[[DEST]]{{.*}}} : vector<256x128xf32>, tensor<256x128xf32>
// CHECK: return %[[WRIT]] : tensor<256x128xf32>
%0 = linalg.unpack %source outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %dest : tensor<8x8x32x16xf32> -> tensor<256x128xf32>
return %0 : tensor<256x128xf32>
@@ -1327,15 +1330,17 @@ module attributes {transform.with_named_sequence} {
// -----
+// CHECK-LABEL: test_vectorize_unpack_no_vector_sizes
+// CHECK-SAME: %[[SRC:.*]]: tensor<8x8x32x16xf32>
+// CHECK-SAME: %[[DEST:.*]]: tensor<256x128xf32>
func.func @test_vectorize_unpack_no_vector_sizes(%source: tensor<8x8x32x16xf32>, %dest: tensor<256x128xf32>) -> tensor<256x128xf32> {
// CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[C0:.*]] = arith.constant 0 : index
- // CHECK: %[[READ:.*]] = vector.transfer_read {{.*}} : tensor<8x8x32x16xf32>, vector<8x8x32x16xf32>
+ // CHECK: %[[READ:.*]] = vector.transfer_read %[[SRC]]{{.*}}} : tensor<8x8x32x16xf32>, vector<8x8x32x16xf32>
// CHECK: %[[TRANSP:.*]] = vector.transpose %[[READ]], [0, 2, 1, 3] : vector<8x8x32x16xf32> to vector<8x32x8x16xf32>
// CHECK: %[[SHAPC:.*]] = vector.shape_cast %[[TRANSP]] : vector<8x32x8x16xf32> to vector<256x128xf32>
- // CHECK: %[[EMPT:.*]] = tensor.empty() : tensor<256x128xf32>
// CHECK: %[[C00:.*]] = arith.constant 0 : index
- // CHECK: %[[WRIT:.*]] = vector.transfer_write %[[SHAPC]], {{.*}} : vector<256x128xf32>, tensor<256x128xf32>
+ // CHECK: %[[WRIT:.*]] = vector.transfer_write %[[SHAPC]], %[[DEST]]{{.*}}} : vector<256x128xf32>, tensor<256x128xf32>
// CHECK: return %[[WRIT]] : tensor<256x128xf32>
%0 = linalg.unpack %source inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %dest : tensor<8x8x32x16xf32> -> tensor<256x128xf32>
return %0 : tensor<256x128xf32>
@@ -1350,15 +1355,17 @@ func.func @test_vectorize_unpack_no_vector_sizes(%source: tensor<8x8x32x16xf32>,
// -----
+// CHECK-LABEL: test_vectorize_unpack_no_vector_sizes_slice_output
+// CHECK-SAME: %[[SRC:.*]]: tensor<8x4x16x16xf32>
+// CHECK-SAME: %[[DEST:.*]]: tensor<64x127xf32>
func.func @test_vectorize_unpack_no_vector_sizes_slice_output(%source: tensor<8x4x16x16xf32>, %dest: tensor<64x127xf32>) -> tensor<64x127xf32> {
// CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[C0:.*]] = arith.constant 0 : index
- // CHECK: %[[READ:.*]] = vector.transfer_read {{.*}} : tensor<8x4x16x16xf32>, vector<8x4x16x16xf32>
+ // CHECK: %[[READ:.*]] = vector.transfer_read %[[SRC]]{{.*}}} : tensor<8x4x16x16xf32>, vector<8x4x16x16xf32>
// CHECK: %[[TRANSP:.*]] = vector.transpose %[[READ]], [1, 2, 0, 3] : vector<8x4x16x16xf32> to vector<4x16x8x16xf32>
// CHECK: %[[SHAPC:.*]] = vector.shape_cast %[[TRANSP]] : vector<4x16x8x16xf32> to vector<64x128xf32>
- // CHECK: %[[EMPT:.*]] = tensor.empty() : tensor<64x127xf32>
// CHECK: %[[C00:.*]] = arith.constant 0 : index
- // CHECK: %[[WRIT:.*]] = vector.transfer_write %[[SHAPC]], %[[EMPT]]{{\[}}%[[C00]], %[[C00]]]
+ // CHECK: %[[WRIT:.*]] = vector.transfer_write %[[SHAPC]], %[[DEST]]
// CHECK-SAME: {in_bounds = [true, false]} : vector<64x128xf32>, tensor<64x127xf32>
// CHECK: return %[[WRIT]] : tensor<64x127xf32>
%0 = linalg.unpack %source outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [16, 16] into %dest : tensor<8x4x16x16xf32> -> tensor<64x127xf32>
@@ -1374,18 +1381,20 @@ func.func @test_vectorize_unpack_no_vector_sizes_slice_output(%source: tensor<8x
// -----
+// CHECK-LABEL: test_vectorize_unpack_no_vector_sizes_permute
+// CHECK-SAME: %[[SRC:.*]]: tensor<4x7x4xf32>
+// CHECK-SAME: %[[DEST:.*]]: tensor<7x16xf32>
func.func @test_vectorize_unpack_no_vector_sizes_permute(%source: tensor<4x7x4xf32>, %dest: tensor<7x16xf32>) -> tensor<7x16xf32> {
%0 = linalg.unpack %source outer_dims_perm=[1, 0] inner_dims_pos = [1] inner_tiles = [4] into %dest : tensor<4x7x4xf32> -> tensor<7x16xf32>
return %0 : tensor<7x16xf32>
}
// CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[C0:.*]] = arith.constant 0 : index
- // CHECK: %[[READ:.*]] = vector.transfer_read {{.*}} : tensor<4x7x4xf32>, vector<4x7x4xf32>
+ // CHECK: %[[READ:.*]] = vector.transfer_read %[[SRC]]{{.*}}} : tensor<4x7x4xf32>, vector<4x7x4xf32>
// CHECK: %[[TRANSP:.*]] = vector.transpose %[[READ]], [1, 0, 2] : vector<4x7x4xf32> to vector<7x4x4xf32>
// CHECK: %[[SHAPC:.*]] = vector.shape_cast %[[TRANSP]] : vector<7x4x4xf32> to vector<7x16xf32>
- // CHECK: %[[EMPT:.*]] = tensor.empty() : tensor<7x16xf32>
// CHECK: %[[C00:.*]] = arith.constant 0 : index
- // CHECK: %[[WRIT:.*]] = vector.transfer_write %[[SHAPC]], {{.*}} : vector<7x16xf32>, tensor<7x16xf32>
+ // CHECK: %[[WRIT:.*]] = vector.transfer_write %[[SHAPC]], %[[DEST]]{{.*}}} : vector<7x16xf32>, tensor<7x16xf32>
// CHECK: return %[[WRIT]] : tensor<7x16xf32>
module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
|
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
thanks!
This PR makes sure that we don't generate unnecessary
tensor.empty
when vectorizing
linalg.unpack
.To better visualize the changes implemented here, consider this IR:
Below is the output after vectorization, BEFORE and AFTER this PR.
BEFORE (note
tensor.empty
and the fact that%arg1
is not used):AFTER (note that
%arg1
is correctly used):