Skip to content

NetlogoTrafficmodel2

Julius Bañgate edited this page Apr 17, 2023 · 3 revisions
Annotation 2023-04-17 130655_netlogoTrafficModel

Path: Library models/Toy Models/Traffic/models/Traffic and Pollution.gaml

/***
* Name: NetlogoTrafficmodel2
* Author: Benoit Gaudou
* Description: This model is a variation of the "Netlogo - Traffic model - 1 road.gaml" in order to be able 
*     to visualise the impacts of parameters on the congestion and compare 2 scenarios of acceleration-deceleration. 
*     It is based on the Netlogo model "Traffic model".
*     Wilensky, U. (1997). NetLogo Traffic Basic model. http://ccl.northwestern.edu/netlogo/models/TrafficBasic. 
*     Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.
*  It has been implemented with the Netlogo platform:
*     Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. 
*     Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.
* Tags: traffic, transport, congestion, netlogo
***/

model NetlogoTrafficmodel

global torus: true {
	int pavement_width <- 50;
	int pavement_height <- 14;
	
	geometry shape <- rectangle(pavement_width * 2, pavement_height * 2);	
	image_file voit_image_file <- image_file("../includes/voit.png");
	image_file voit_red_image_file <- image_file("../includes/voit_red.png");
	image_file voit_blue_image_file <- image_file("../includes/voit_blue.png");

	int y_road1 <- 4;
	int y_road2 <- 10;
	list<car> cars_on_road1;
	list<car> cars_on_road2;
	car sample_car1;
	car sample_car2;	
	list<pavement> road1;
	list<pavement> road2;
	
	int nb_cars <- 25;
	float acceleration1 <- 0.0045 min: 0.0 max: 0.01 parameter: true;
	float deceleration1 <- 0.026 min: 0.0 max: 0.1 parameter: true;	
	float acceleration2 <- 0.0005 min: 0.0 max: 0.01 parameter: true;
	float deceleration2 <- 0.004 min: 0.0 max: 0.1 parameter: true;	
	float max_speed <- 50.0;
	
	init {
		road1 <- pavement where(each.grid_y = y_road1);
//		cars_on_road1 <- create_cars_on_road(nb_cars, road1);
		cars_on_road1 <- create_cars_on_road(1, road1, acceleration1, deceleration1);
		sample_car1 <- pick_sample(cars_on_road1, #red, voit_red_image_file);
		
		road2 <- pavement where(each.grid_y = y_road2);		
//		cars_on_road2 <- create_cars_on_road(nb_cars, road2);
		cars_on_road2 <- create_cars_on_road(1, road2, acceleration2, deceleration2);		
		sample_car2 <- pick_sample(cars_on_road2, #blue, voit_blue_image_file);		
	}
	
	reflex create_cars when: (length(car) < nb_cars * 2) and every(10 #cycles) {
		do create_cars_on_road(1, road1, acceleration1, deceleration1);
		do create_cars_on_road(1, road2, acceleration2, deceleration2);		
	}
	
	list<car> create_cars_on_road(int num_cars, list<pavement> road, float acc, float dec){
		create car number: num_cars returns: cars_on_road {
			pavement free_pavement <- one_of(road where(empty(car inside self)));
			if(free_pavement != nil) {
				my_pavement <- free_pavement;
				location <- my_pavement.location;
				acceleration <- acc;
				deceleration <- dec;
			} else {
				do die;
			}
			heading <- 0.0;
		}
		
		return cars_on_road;		
	}
	
	car pick_sample(list<car> cars, rgb col, image_file _icon) {
		car a_car <- one_of(cars);
		ask a_car {
			color <- col;
			icon <- _icon;
		}	
		return a_car;	
	}

	
}

grid pavement height: pavement_height width: pavement_width {
	init {
		if( (grid_y >= y_road1 - 1) and (grid_y <= y_road1 + 1) ) or 
		  ( (grid_y >= y_road2 - 1) and (grid_y <= y_road2 + 1)) {
			color <- #white;
		} else {
			color <- #black;
		}
	}
}

species car skills: [moving] {
	float speed_limit;
	float speed_min;
	float acceleration;
	float deceleration;
	rgb color;
	image_file icon;
	pavement my_pavement;
	
	init {
		color <- #blue;
		icon <- voit_image_file;
		speed <- 0.1 +rnd(0.9);
		speed_limit <- 1.0;
		speed_min <- 0.0;
	}
	
	reflex patch_ahead {
		my_pavement <- pavement first_with(each overlaps self);
		pavement next_pavement <- pavement first_with( 
										(each.grid_y = my_pavement.grid_y) and 
										(each.grid_x = (my_pavement.grid_x + signum(cos(heading))) mod pavement_width)
		);
		car car_ahead <- first(car inside next_pavement);
		if(car_ahead != nil) {
			do slow_down(car_ahead);
		} else {
			do speed_up;
		}
		
		do move heading: heading;
	}

	action slow_down(car car_ahead) {
		speed <- max(speed_min, car_ahead.speed - deceleration) ;
	}
	
	action speed_up {
		speed <- min(speed + acceleration, speed_limit);
	}

	aspect rect {
		draw rectangle(1.5,1) rotated_by heading color: color border: #black;
	}
	
	aspect icon {
		draw icon at: location size: 3 rotate: heading ;
	}	
}

experiment NetlogoTrafficmodel type: gui {
	float minimum_cycle_duration <- 0.01;
	
	output {
		layout #vertical;
		display road {
			grid pavement /*border: #black*/;
			species car aspect: icon;
			
		}

		display sp  type: 2d {
			chart "speed" type: series {
				data "red car" value: sample_car1.speed * max_speed color: sample_car1.color;
				data "blue car" value: sample_car2.speed * max_speed color: sample_car2.color;
			}
		}
	}
}


  1. What's new (Changelog)
  1. Installation and Launching
    1. Installation
    2. Launching GAMA
    3. Updating GAMA
    4. Installing Plugins
  2. Workspace, Projects and Models
    1. Navigating in the Workspace
    2. Changing Workspace
    3. Importing Models
  3. Editing Models
    1. GAML Editor (Generalities)
    2. GAML Editor Tools
    3. Validation of Models
  4. Running Experiments
    1. Launching Experiments
    2. Experiments User interface
    3. Controls of experiments
    4. Parameters view
    5. Inspectors and monitors
    6. Displays
    7. Batch Specific UI
    8. Errors View
  5. Running Headless
    1. Headless Batch
    2. Headless Server
    3. Headless Legacy
  6. Preferences
  7. Troubleshooting
  1. Introduction
    1. Start with GAML
    2. Organization of a Model
    3. Basic programming concepts in GAML
  2. Manipulate basic Species
  3. Global Species
    1. Regular Species
    2. Defining Actions and Behaviors
    3. Interaction between Agents
    4. Attaching Skills
    5. Inheritance
  4. Defining Advanced Species
    1. Grid Species
    2. Graph Species
    3. Mirror Species
    4. Multi-Level Architecture
  5. Defining GUI Experiment
    1. Defining Parameters
    2. Defining Displays Generalities
    3. Defining 3D Displays
    4. Defining Charts
    5. Defining Monitors and Inspectors
    6. Defining Export files
    7. Defining User Interaction
  6. Exploring Models
    1. Run Several Simulations
    2. Batch Experiments
    3. Exploration Methods
  7. Optimizing Model Section
    1. Runtime Concepts
    2. Optimizing Models
  8. Multi-Paradigm Modeling
    1. Control Architecture
    2. Defining Differential Equations
  1. Manipulate OSM Data
  2. Diffusion
  3. Using Database
  4. Using FIPA ACL
  5. Using BDI with BEN
  6. Using Driving Skill
  7. Manipulate dates
  8. Manipulate lights
  9. Using comodel
  10. Save and restore Simulations
  11. Using network
  12. Headless mode
  13. Using Headless
  14. Writing Unit Tests
  15. Ensure model's reproducibility
  16. Going further with extensions
    1. Calling R
    2. Using Graphical Editor
    3. Using Git from GAMA
  1. Built-in Species
  2. Built-in Skills
  3. Built-in Architecture
  4. Statements
  5. Data Type
  6. File Type
  7. Expressions
    1. Literals
    2. Units and Constants
    3. Pseudo Variables
    4. Variables And Attributes
    5. Operators [A-A]
    6. Operators [B-C]
    7. Operators [D-H]
    8. Operators [I-M]
    9. Operators [N-R]
    10. Operators [S-Z]
  8. Exhaustive list of GAMA Keywords
  1. Installing the GIT version
  2. Developing Extensions
    1. Developing Plugins
    2. Developing Skills
    3. Developing Statements
    4. Developing Operators
    5. Developing Types
    6. Developing Species
    7. Developing Control Architectures
    8. Index of annotations
  3. Introduction to GAMA Java API
    1. Architecture of GAMA
    2. IScope
  4. Using GAMA flags
  5. Creating a release of GAMA
  6. Documentation generation

  1. Predator Prey
  2. Road Traffic
  3. 3D Tutorial
  4. Incremental Model
  5. Luneray's flu
  6. BDI Agents

  1. Team
  2. Projects using GAMA
  3. Scientific References
  4. Training Sessions

Resources

  1. Videos
  2. Conferences
  3. Code Examples
  4. Pedagogical materials
Clone this wiki locally